Ch 04: 2D KinematicsWorksheetSee all chapters
All Chapters
Ch 01: Intro to Physics; Units
Ch 02: 1D Motion / Kinematics
Ch 03: Vectors
Ch 04: 2D Kinematics
Ch 05: Projectile Motion
Ch 06: Intro to Forces (Dynamics)
Ch 07: Friction, Inclines, Systems
Ch 08: Centripetal Forces & Gravitation
Ch 09: Work & Energy
Ch 10: Conservation of Energy
Ch 11: Momentum & Impulse
Ch 12: Rotational Kinematics
Ch 13: Rotational Inertia & Energy
Ch 14: Torque & Rotational Dynamics
Ch 15: Rotational Equilibrium
Ch 16: Angular Momentum
Ch 17: Periodic Motion
Ch 19: Waves & Sound
Ch 20: Fluid Mechanics
Ch 21: Heat and Temperature
Ch 22: Kinetic Theory of Ideal Gasses
Ch 23: The First Law of Thermodynamics
Ch 24: The Second Law of Thermodynamics
Ch 25: Electric Force & Field; Gauss' Law
Ch 26: Electric Potential
Ch 27: Capacitors & Dielectrics
Ch 28: Resistors & DC Circuits
Ch 29: Magnetic Fields and Forces
Ch 30: Sources of Magnetic Field
Ch 31: Induction and Inductance
Ch 32: Alternating Current
Ch 33: Electromagnetic Waves
Ch 34: Geometric Optics
Ch 35: Wave Optics
Ch 37: Special Relativity
Ch 38: Particle-Wave Duality
Ch 39: Atomic Structure
Ch 40: Nuclear Physics
Ch 41: Quantum Mechanics

Concept #1: Average Speed and Velocity in 2D

Practice: While following a treasure map, you start at an old oak tree. You first walk 85 m at 30.0° west of north, then walk 92 m at 67.0° north of east. You reach the treasure 2 minutes later. Calculate the magnitude of your average velocity for the entire trip.

Practice: While following a treasure map, you start at an old oak tree. You first walk 85 m at 30.0° west of north, then walk 92 m at 67.0° north of east. You reach the treasure 2 minutes later. Calculate your average speed for the entire trip.

A) 1.5 m/s
B) 177 m/s
C) 88.5 m/s

Concept #2: Calculating Velocity Components

Practice: A coastal breeze pushes your sailboat at constant velocity for 8 min. After checking your instruments, you determine you’ve been pushed 650 m west and 800 m south. What was the magnitude & direction of your average velocity?

Practice: A ball moves on a tabletop. The ball has initial x & y coordinates (1.8m, 3.6m). The ball moves 10m/s at 53.1° above the x-axis for 4s. What are the x & y coordinates of the ball’s final position?