Clutch Prep
Physics
Physics
Science
Analytical Chemistry
Anatomy & Physiology
Biology
Biochemistry
Chemistry
Cell Biology
Genetics
Organic Chemistry
Physics
Business
Accounting
Macroeconomics
Microeconomics
Math
Calculus
Statistics
Chapter Videos
Exam Reviews
More
Chapter Videos
Exam Reviews
Log In
Sign up
Young Calc 13th Edition - Physics Tutoring Videos
ISBN: 978-0321696861
Not the textbook you were looking for? Pick another one here
27,367
students have used Clutch for Phy
97%
got a better grade
3,312
minutes of Physics videos
Young Calc (13th) Topics and Chapters that we cover
Ch 01: Units, Physical Quantities & Vectors
Intro, Units & Conversions
Start
0%
Intro to Vectors (Basic Trigonometry)
Start
0%
Vectors with More Trigonometry
Start
0%
Ch 02: Motion Along a Straight Line
Intro to Motion (Kinematics)
Start
0%
Motion with Multiple Parts
Start
0%
Meet/Catch Problems
Start
0%
Vertical Motion
Start
0%
Ch 03: Motion in Two or Three Dimensions
Intro to 2D Motion
Start
0%
Projectile Motion
Start
0%
More Projectile Motion
Start
0%
Initial Velocity in Projectile Motion
Start
0%
Circular Motion
Start
0%
Ch 04: Newton's Laws of Motion
Intro to Forces + Newton's Laws
Start
0%
Force Problems with Motion
Start
0%
Forces with Multiple Objects
Start
0%
Vertical Forces & Equilibrium
Start
0%
More 1D Equilibrium
Start
0%
Vertical Forces & Acceleration
Start
0%
Landing & Jumping Problems
Start
0%
Forces in 2D
Start
0%
Ch 05: Applying Newton's Laws
Intro to Friction
Start
0%
Kinetic Friction
Start
0%
Static Friction
Start
0%
Inclined Planes
Start
0%
Inclines with Friction
Start
0%
Forces in Connected Objects (Systems)
Start
0%
Centripetal Forces
Start
0%
Intro to Springs (Hooke's Law)
Start
0%
Ch 06: Work & Kinetic Energy
Intro to Energy
Start
0%
Intro to Calculating Work
Start
0%
Work By Gravity & Inclined Planes
Start
0%
Work By Variable Forces (Springs)
Start
0%
Net Work & Kinetic Energy
Start
0%
More Work-Energy Problems
Start
0%
Power
Start
0%
Calculating Work via Integration
Start
0%
Instantaneous Power
Start
0%
Ch 07: Potential Energy & Conservation
Intro to Conservation of Energy
Start
0%
Energy with Non-Conservative Forces
Start
0%
Conservative Forces & Inclined Planes
Start
0%
Motion Along Curved Paths
Start
0%
Energy in Connected Objects (Systems)
Start
0%
Solving Projectile Motion Using Energy
Start
0%
Springs & Elastic Potential Energy
Start
0%
Escape Velocity
Start
0%
Force & Potential Energy
Start
0%
Ch 08: Momentum, Impulse, and Collisions
Intro to Momentum
Start
0%
Intro to Impulse
Start
0%
Impulse with Variable Forces
Start
0%
Intro to Conservation of Momentum
Start
0%
Push-Away Problems
Start
0%
Adding Mass to a Moving System
Start
0%
How to Identify the Type of Collision
Start
0%
Inelastic Collisions
Start
0%
2D Collisions
Start
0%
Newton's Second Law and Momentum
Start
0%
Momentum & Impulse in 2D
Start
0%
Push-Away Problems With Energy
Start
0%
Elastic Collisions
Start
0%
Collisions & Motion (Momentum & Energy)
Start
0%
Collisions with Springs
Start
0%
Intro to Center of Mass
Start
0%
Ch 09: Rotation of Rigid Bodies
Rotational Position & Displacement
Start
0%
Rotational Velocity & Acceleration
Start
0%
Equations of Rotational Motion
Start
0%
Converting Between Linear & Rotational
Start
0%
Types of Acceleration in Rotation
Start
0%
Rolling Motion (Free Wheels)
Start
0%
Intro to Connected Wheels
Start
0%
More Connect Wheels (Bicycles)
Start
0%
Intro to Moment of Inertia
Start
0%
Moment of Inertia of Systems
Start
0%
Moment of Inertia & Mass Distribution
Start
0%
Parallel Axis Theorem
Start
0%
Intro to Rotational Kinetic Energy
Start
0%
Energy of Rolling Motion
Start
0%
Conservation of Energy with Rotation
Start
0%
More Conservation of Energy Problems
Start
0%
Conservation of Energy in Rolling Motion
Start
0%
Types of Motion & Energy
Start
0%
Moment of Inertia via Integration
Start
0%
Torque with Kinematic Equations
Start
0%
Rotational Dynamics with Two Motions
Start
0%
Rotational Dynamics with Two Motions
Start
0%
Rotational Dynamics of Rolling Motion
Start
0%
Ch 10: Dynamics of Rotational Motion
Intro to Torque
Start
0%
Net Torque & Sign of Torque
Start
0%
Torque Due to Weight
Start
0%
Torque on Discs & Pulleys
Start
0%
Torque & Acceleration (Rotational Dynamics)
Start
0%
How to Solve: Energy vs Torque
Start
0%
Intro to Angular Momentum
Start
0%
Conservation of Angular Momentum
Start
0%
Angular Momentum of a Point Mass
Start
0%
Angular Momentum of Objects in Linear Motion
Start
0%
Opening/Closing Arms on Rotating Stool
Start
0%
Spinning on String of Variable Length
Start
0%
Intro to Angular Collisions
Start
0%
Angular Collisions with Linear Motion
Start
0%
Jumping Into/Out of Moving Disc
Start
0%
Angular Momentum & Newton's Second Law
Start
0%
Ch 11: Equilibrium & Elasticity
Review: Center of Mass
Start
0%
Torque & Equilibrium
Start
0%
Equilibrium with Multiple Objects
Start
0%
Equilibrium with Multiple Supports
Start
0%
Center of Mass & Simple Balance
Start
0%
Equilibrium in 2D - Ladder Problems
Start
0%
Beam / Shelf Against a Wall
Start
0%
More 2D Equilibrium Problems
Start
0%
Ch 12: Fluid Mechanics
Density
Start
0%
Intro to Pressure
Start
0%
Pascal's Law & Hydraulic Lift
Start
0%
Pressure Gauge: Barometer
Start
0%
Pressure Gauge: Manometer
Start
0%
Pressure Gauge: U-shaped Tube
Start
0%
Buoyancy & Buoyant Force
Start
0%
Ideal vs Real Fluids
Start
0%
Fluid Flow & Continuity Equation
Start
0%
Ch 13: Gravitation
Newton's Law of Gravity
Start
0%
Gravitational Forces in 2D
Start
0%
Acceleration Due to Gravity
Start
0%
Satellite Motion: Intro
Start
0%
Satellite Motion: Speed & Period
Start
0%
Geosynchronous Orbits
Start
0%
Overview of Kepler's Laws
Start
0%
Kepler's First Law
Start
0%
Kepler's Third Law
Start
0%
Ch 14: Periodic Motion
Spring Force (Hooke's Law)
Start
0%
Intro to Simple Harmonic Motion (Horizontal Springs)
Start
0%
Energy in Simple Harmonic Motion
Start
0%
Simple Harmonic Motion of Vertical Springs
Start
0%
Simple Harmonic Motion of Pendulums
Start
0%
Energy in Pendulums
Start
0%
Ch 15: Mechanical Waves
What is a Wave?
Start
0%
The Mathematical Description of a Wave
Start
0%
Waves on a String
Start
0%
Wave Interference
Start
0%
Standing Waves
Start
0%
Ch 16: Sound & Hearing
Sound Waves
Start
0%
Standing Sound Waves
Start
0%
Sound Intensity
Start
0%
The Doppler Effect
Start
0%
Beats
Start
0%
Ch 17: Temperature and Heat
Temperature
Start
0%
Zeroth Law of Thermodynamics
Start
0%
Thermal Expansion
Start
0%
Introduction to Heat
Start
0%
Changes in Temperature & Heat Capacity
Start
0%
Calorimetry
Start
0%
Changes in Phase & Latent Heat
Start
0%
Heat Transfer
Start
0%
Ch 18: Thermal Properties of Matter
Phase Diagrams, Triple Points and Critical Points
Start
0%
Introduction to Ideal Gasses
Start
0%
Intro to Kinetic Theory
Start
0%
Kinetic Energy and Temperature
Start
0%
Speed Distribution of Ideal Gasses
Start
0%
Ch 19: The First Law of Thermodynamics
Internal Energy
Start
0%
Introduction to Heat Capacity
Start
0%
First Law of Thermodynamics
Start
0%
Thermal Processes
Start
0%
Ch 20: The Second Law of Thermodynamics
Four Stroke Piston Engine
Start
0%
Carnot Cycle
Start
0%
Refrigerators
Start
0%
Entropy and the Second Law
Start
0%
Statistical Interpretation of Entropy
Start
0%
Ch 21: Electric Charge and Electric Field
Electric Charge
Start
0%
Charging Objects
Start
0%
Charging By Induction
Start
0%
Conservation of Charge
Start
0%
Coulomb's Law (Electric Force)
Start
0%
Coulomb's Law with Calculus
Start
0%
Electric Field
Start
0%
Electric Fields with Calculus
Start
0%
Parallel Plate Capacitors
Start
0%
Electric Field Lines
Start
0%
Dipole Moment
Start
0%
Ch 22: Gauss' Law
Electric Fields in Conductors
Start
0%
Electric Flux
Start
0%
Gauss' Law
Start
0%
Electric Flux with Calculus
Start
0%
Gauss' Law with Calculus
Start
0%
Ch 23: Electric Potential
Electric Potential Energy
Start
0%
Electric Potential
Start
0%
Work From Electric Force
Start
0%
Relationships Between Force, Field, Energy, Potential
Start
0%
Potential Difference with Calculus
Start
0%
The ElectronVolt
Start
0%
Equipotential Surfaces
Start
0%
Electric Field As Derivative of Potential
Start
0%
Ch 24: Capacitance and Dielectrics
Capacitors & Capacitance
Start
0%
Parallel Plate Capacitors
Start
0%
Energy Stored by Capacitor
Start
0%
Capacitance Using Calculus
Start
0%
Combining Capacitors in Series & Parallel
Start
0%
Solving Capacitor Circuits
Start
0%
Intro To Dielectrics
Start
0%
How Dielectrics Work
Start
0%
Dielectric Breakdown
Start
0%
Ch 25: Current, Resistance, and EMF
Intro to Current
Start
0%
Current with Calculus
Start
0%
Resistors and Ohm's Law
Start
0%
Power in Circuits
Start
0%
Microscopic View of Current
Start
0%
Ch 26: Direct-Current Circuits
Combining Resistors in Series & Parallel
Start
0%
Kirchhoff's Junction Rule
Start
0%
Solving Resistor Circuits
Start
0%
Kirchhoff's Loop Rule
Start
0%
Ch 27: Magnetic Field and Magnetic Forces
Magnets and Magnetic Fields
Start
0%
Summary of Magnetism Problems
Start
0%
Force on Moving Charges & Right Hand Rule
Start
0%
Circular Motion of Charges in Magnetic Fields
Start
0%
Mass Spectrometer
Start
0%
Magnetic Force on Current-Carrying Wire
Start
0%
Force and Torque on Current Loops
Start
0%
Ch 28: Sources of Magnetic Field
Magnetic Field Produced by Moving Charges
Start
0%
Magnetic Field Produced by Straight Currents
Start
0%
Magnetic Force Between Parallel Currents
Start
0%
Magnetic Force Between Two Moving Charges
Start
0%
Magnetic Field Produced by Loops and Solenoids
Start
0%
Toroidal Solenoids aka Toroids
Start
0%
Biot-Savart Law with Calculus
Start
0%
Ampere's Law with Calculus
Start
0%
Ch 29: Electromagnetic Induction
Induction Experiments
Start
0%
Magnetic Flux
Start
0%
Magnetic Flux with Calculus
Start
0%
Faraday's Law
Start
0%
Faraday's Law with Calculus
Start
0%
Lenz's Law
Start
0%
Motional EMF
Start
0%
Transformers
Start
0%
Inductors
Start
0%
Ch 30: Inductance
Mutual Inductance
Start
0%
Self Inductance
Start
0%
LR Circuits
Start
0%
LC Circuits
Start
0%
LRC Circuits
Start
0%
Ch 31: Alternating Current
Alternating Voltages and Currents
Start
0%
RMS Current and Voltage
Start
0%
Power in AC Circuits
Start
0%
Phasors
Start
0%
Resistors in AC Circuits
Start
0%
Phasors for Resistors
Start
0%
Capacitors in AC Circuits
Start
0%
Phasors for Capacitors
Start
0%
Inductors in AC Circuits
Start
0%
Phasors for Inductors
Start
0%
Impedance in AC Circuits
Start
0%
Series LRC Circuits
Start
0%
Resonance in Series LRC Circuits
Start
0%
Ch 32: Electromagnetic Waves
What is an Electromagnetic Wave?
Start
0%
The Electromagnetic Spectrum
Start
0%
Energy Carried by Electromagnetic Waves
Start
0%
Electromagnetic Waves as Sinusoidal Waves
Start
0%
Displacement Current and Maxwell's Equations
Start
0%
Ch 33: The Nature and Propagation of Light
Ray Nature Of Light
Start
0%
Reflection Of Light
Start
0%
Refraction Of Light
Start
0%
Total Internal Reflection
Start
0%
Polarization Filters
Start
0%
Ch 34: Geometric Optics
Ray Diagrams For Mirrors
Start
0%
Mirror Equation
Start
0%
Refraction At Spherical Surfaces
Start
0%
Ray Diagrams For Lenses
Start
0%
Thin Lens And Lens Maker Equations
Start
0%
Ch 35: Interference
Ch 36: Diffraction
Diffraction
Start
0%
Diffraction with Huygen's Principle
Start
0%
Young's Double Slit Experiment
Start
0%
Single Slit Diffraction
Start
0%
Ch 37: Special Relativity
Inertial Reference Frames
Start
0%
Special Vs. Galilean Relativity
Start
0%
Consequences of Relativity
Start
0%
Lorentz Transformations
Start
0%
Ch 38: Photons: Light Waves Behaving as Particles
Particle-Wave Duality
Start
0%
Ch 39: Particles Behaving as Waves
Ch 40: Quantum Mechanics
Quantum Mechanics
Start
0%
Ch 41: Atomic Structure
Atomic Structure
Start
0%
Ch 42: Molecules and Condensed Matter
Ch 43: Nuclear Physics
Nuclear Physics
Start
0%
Ch 44: Particle Physics and Cosmology
Particle Physics
Start
0%
Sign in with Facebook
Sign in with Gmail
OR
Email
Password
If you forgot your password, you can
reset it
.