Ch 32: Wave OpticsSee all chapters
All Chapters
Ch 01: Units & Vectors
Ch 02: 1D Motion (Kinematics)
Ch 03: 2D Motion (Projectile Motion)
Ch 04: Intro to Forces (Dynamics)
Ch 05: Friction, Inclines, Systems
Ch 06: Centripetal Forces & Gravitation
Ch 07: Work & Energy
Ch 08: Conservation of Energy
Ch 09: Momentum & Impulse
Ch 10: Rotational Kinematics
Ch 11: Rotational Inertia & Energy
Ch 12: Torque & Rotational Dynamics
Ch 13: Rotational Equilibrium
Ch 14: Angular Momentum
Ch 15: Periodic Motion (NEW)
Ch 15: Periodic Motion (Oscillations)
Ch 16: Waves & Sound
Ch 17: Fluid Mechanics
Ch 18: Heat and Temperature
Ch 19: Kinetic Theory of Ideal Gasses
Ch 20: The First Law of Thermodynamics
Ch 21: The Second Law of Thermodynamics
Ch 22: Electric Force & Field; Gauss' Law
Ch 23: Electric Potential
Ch 24: Capacitors & Dielectrics
Ch 25: Resistors & DC Circuits
Ch 26: Magnetic Fields and Forces
Ch 27: Sources of Magnetic Field
Ch 28: Induction and Inductance
Ch 29: Alternating Current
Ch 30: Electromagnetic Waves
Ch 31: Geometric Optics
Ch 32: Wave Optics
Ch 34: Special Relativity
Ch 35: Particle-Wave Duality
Ch 36: Atomic Structure
Ch 37: Nuclear Physics
Ch 38: Quantum Mechanics

Single Slit Diffraction

See all sections

Concept #1: Single Slit Diffraciton

Practice: Light from a 600 nm laser is shown through a single slit of unknown width. If a screen is placed 4.5 m behind the slit captures a diffraction patter with a central bright fringe of width 20 mm, what is the width of the single slit?

Example #1: Number of Dark Fringes on a Screen

Additional Problems
Coherent laser light passes through a narrow slit that has width 1.50 x 10 -4 m and falls on a screen that is 4.00 m from the slit. In the diffraction pattern on the screen the width of the central maximum is 3.00 x 10-2 m. What is the wavelength of the light?
A single slit that has a width of 0.40 mm is illuminated by coherent light of wavelength 500 nm. The diffraction pattern is observed on a screen that is a large distance from the slit. On the screen the width of the central maximum is 4.0 mm. If the width of the slit is changed to 0.20 mm. the width of the central maximum becomes (a) 4.0 mm (unchanged) (b) 2.0 mm (c) 8.0 mm (d) none of these
Coherent light with wavelength λ = 600 nm falls on a single thin slit and the resulting diffraction pattern is observed on a screen that is 2.0 m from the slit. The width of the central bright fringe is measured to be 4.0 mm. If the width of the slit is doubled while the wavelength of the light remains the same, the width of the central bright fringe in the diffraction pattern (a) stays the same (b) increases (c) decreases
Coherent light of wavelength λ = 700 nm passes through a single narrow slit that has width a. The interference pattern is observed on a screen a distance 4.0 m from the slit. The central diffraction pattern on the screen has a width of 12.0 mm. What is the width a of the slit?
Light of 540 nm wavelength is shone through a single slit with a width of 10 μm. What is the maximum possible number of dark fringes that could fit on any screen place in front of the slit?
Monochromatic light of wavelength λ = 500 nm passes through a narrow slit of width a and on a screen 2.0 m from the screen the width of the central maximum is 3.0 mm. If the width of the slit in increased, the width of the central maximum is A) 3.0 mm B) larger than 3.0 mm C) smaller than 3.0 mm
Consider the setup of a single slit experiment. Determine the height y3, where the third minimum occurs. 1. y3 = 5λ/a L 2.  y3 = 7λ/2a L 3.  y3 = λ/a L 4.  y3 = 3λ/2a L 5.  y3 = 9λ/2a L 6.  y3 = 2λ/a L 7.  y3 = 4λ/a L 8.  y3 = 5λ/2a L 9.  y3 = 3λ/a L 10.  y3 = λ/2a L
Coherent light of wavelength 600 nm is incident on a narrow slit. The diffraction pattern is observed on a screen that is 4.00 m from the slit. On the screen the width of the central maximum of the diffraction pattern is 3.00 mm. What is the width of the slit?