We're asked to determine the vertical **displacement** after the object stops accelerating.

This is a **Forces in Kinematics**: *Vertical Acceleration* type of problem. We'll use these steps:

- Draw a
**free body diagram (FBD)** - Apply
**kinematics equations**and Newton's Second Law equation,**Σ****F****=****ma** **Solve**for the target!

The four UAM (kinematics) equations are:

$\overline{)\mathbf{}{{\mathit{v}}}_{{\mathit{f}}}{\mathbf{}}{\mathbf{=}}{\mathbf{}}{{\mathit{v}}}_{{\mathbf{0}}}{\mathbf{}}{\mathbf{+}}{\mathit{a}}{\mathit{t}}\phantom{\rule{0ex}{0ex}}{\mathbf{\u2206}}{\mathit{y}}{\mathbf{=}}{\mathbf{}}\mathbf{\left(}\frac{{\mathit{v}}_{\mathit{f}}\mathbf{+}{\mathit{v}}_{\mathbf{0}}}{\mathbf{2}}\mathbf{\right)}{\mathit{t}}\phantom{\rule{0ex}{0ex}}{\mathbf{\u2206}}{\mathit{y}}{\mathbf{=}}{\mathbf{}}{{\mathit{v}}}_{{\mathbf{0}}}{\mathit{t}}{\mathbf{+}}{\frac{1}{2}}{\mathit{a}}{{\mathit{t}}}^{{\mathbf{2}}}\phantom{\rule{0ex}{0ex}}{\mathbf{}}{{{\mathit{v}}}_{{\mathit{f}}}}^{{\mathbf{2}}}{\mathbf{=}}{\mathbf{}}{{{\mathit{v}}}_{{\mathbf{0}}}}^{{\mathbf{2}}}{\mathbf{}}{\mathbf{+}}{\mathbf{2}}{\mathit{a}}{\mathbf{\u2206}}{\mathit{y}}}$

Compressed air is used to fire a 52 g ball vertically upward from a 1.1-m-tall tube. The air exerts an upward force of 2.2 N on the ball as long as it is in the tube.

How high does the ball go above the top of the tube?

Frequently Asked Questions

What scientific concept do you need to know in order to solve this problem?

Our tutors have indicated that to solve this problem you will need to apply the Forces in Kinematics concept. If you need more Forces in Kinematics practice, you can also practice Forces in Kinematics practice problems.