Collisions & Motion (Momentum & Energy) Video Lessons

Concept

Problem: A 1.25-kg wooden block rests on a table over a large hole as in the figure. A 5.00-g bullet with an initial velocity vi is fired upward into the bottom of the block and remains in the block after the collision. The block and bullet rise to a maximum height of 22.0 cm. Calculate the initial velocity of the bullet from the information provided.

FREE Expert Solution
82% (163 ratings)
Problem Details

A 1.25-kg wooden block rests on a table over a large hole as in the figure. A 5.00-g bullet with an initial velocity vi is fired upward into the bottom of the block and remains in the block after the collision. The block and bullet rise to a maximum height of 22.0 cm. Calculate the initial velocity of the bullet from the information provided.

What scientific concept do you need to know in order to solve this problem?

Our tutors have indicated that to solve this problem you will need to apply the Collisions & Motion (Momentum & Energy) concept. You can view video lessons to learn Collisions & Motion (Momentum & Energy). Or if you need more Collisions & Motion (Momentum & Energy) practice, you can also practice Collisions & Motion (Momentum & Energy) practice problems.

How long does this problem take to solve?

Our expert Physics tutor, Julia took 3 minutes and 2 seconds to solve this problem. You can follow their steps in the video explanation above.

What professor is this problem relevant for?

Based on our data, we think this problem is relevant for Professor Koenig's class at UC.

What textbook is this problem found in?

Our data indicates that this problem or a close variation was asked in Physics for Scientists and Engineers - Serway Calc 9th Edition. You can also practice Physics for Scientists and Engineers - Serway Calc 9th Edition practice problems.