Ch 08: Conservation of EnergyWorksheetSee all chapters
All Chapters
Ch 01: Units & Vectors
Ch 02: 1D Motion (Kinematics)
Ch 03: 2D Motion (Projectile Motion)
Ch 04: Intro to Forces (Dynamics)
Ch 05: Friction, Inclines, Systems
Ch 06: Centripetal Forces & Gravitation
Ch 07: Work & Energy
Ch 08: Conservation of Energy
Ch 09: Momentum & Impulse
Ch 10: Rotational Kinematics
Ch 11: Rotational Inertia & Energy
Ch 12: Torque & Rotational Dynamics
Ch 13: Rotational Equilibrium
Ch 14: Angular Momentum
Ch 15: Periodic Motion (NEW)
Ch 15: Periodic Motion (Oscillations)
Ch 16: Waves & Sound
Ch 17: Fluid Mechanics
Ch 18: Heat and Temperature
Ch 19: Kinetic Theory of Ideal Gasses
Ch 20: The First Law of Thermodynamics
Ch 21: The Second Law of Thermodynamics
Ch 22: Electric Force & Field; Gauss' Law
Ch 23: Electric Potential
Ch 24: Capacitors & Dielectrics
Ch 25: Resistors & DC Circuits
Ch 26: Magnetic Fields and Forces
Ch 27: Sources of Magnetic Field
Ch 28: Induction and Inductance
Ch 29: Alternating Current
Ch 30: Electromagnetic Waves
Ch 31: Geometric Optics
Ch 32: Wave Optics
Ch 34: Special Relativity
Ch 35: Particle-Wave Duality
Ch 36: Atomic Structure
Ch 37: Nuclear Physics
Ch 38: Quantum Mechanics

Solution: A ball of mass m = 300 g is connected by a strong string of length L = 80.0 cm to a pivot and held in place with the string vertical. A wind exerts constant force F to the right on the ball as shown i

Problem

A ball of mass m = 300 g is connected by a strong string of length L = 80.0 cm to a pivot and held in place with the string vertical. A wind exerts constant force F to the right on the ball as shown in Figure P8.82. The ball is released from rest. The wind makes it swing up to attain maximum height H above its starting point before it swings down again.

(a) Find H as a function of F. Evaluate H for
(b) F = 1.00 N and
(c) F = 10.0 N. How does H behave
(d) as F approaches zero and
(e) as F approaches infinity?
(f) Now consider the equilibrium height of the ball with the wind blowing. Determine it as a function of F. Evaluate the equilibrium height for
(g) F = 10 N and
(h) F going to infinity.