Ch 08: Conservation of EnergyWorksheetSee all chapters
All Chapters
Ch 01: Units & Vectors
Ch 02: 1D Motion (Kinematics)
Ch 03: 2D Motion (Projectile Motion)
Ch 04: Intro to Forces (Dynamics)
Ch 05: Friction, Inclines, Systems
Ch 06: Centripetal Forces & Gravitation
Ch 07: Work & Energy
Ch 08: Conservation of Energy
Ch 09: Momentum & Impulse
Ch 10: Rotational Kinematics
Ch 11: Rotational Inertia & Energy
Ch 12: Torque & Rotational Dynamics
Ch 13: Rotational Equilibrium
Ch 14: Angular Momentum
Ch 15: Periodic Motion (NEW)
Ch 15: Periodic Motion (Oscillations)
Ch 16: Waves & Sound
Ch 17: Fluid Mechanics
Ch 18: Heat and Temperature
Ch 19: Kinetic Theory of Ideal Gasses
Ch 20: The First Law of Thermodynamics
Ch 21: The Second Law of Thermodynamics
Ch 22: Electric Force & Field; Gauss' Law
Ch 23: Electric Potential
Ch 24: Capacitors & Dielectrics
Ch 25: Resistors & DC Circuits
Ch 26: Magnetic Fields and Forces
Ch 27: Sources of Magnetic Field
Ch 28: Induction and Inductance
Ch 29: Alternating Current
Ch 30: Electromagnetic Waves
Ch 31: Geometric Optics
Ch 32: Wave Optics
Ch 34: Special Relativity
Ch 35: Particle-Wave Duality
Ch 36: Atomic Structure
Ch 37: Nuclear Physics
Ch 38: Quantum Mechanics

Solution: As shown in Figure P8.46, a light string that does not stretch changes from horizontal to vertical as it passes over the edge of a table. The string connects m1, a 3.50-kg block originally at rest on

Problem

As shown in Figure P8.46, a light string that does not stretch changes from horizontal to vertical as it passes over the edge of a table. The string connects m1, a 3.50-kg block originally at rest on the horizontal table at a height h = 1.20 m above the floor, to m2, a hanging 1.90-kg block originally a distance d = 0.900 m above the floor. Neither the surface of the table nor its edge exerts a force of kinetic friction. The blocks start to move from rest. The sliding block m1 is projected horizontally after reaching the edge of the table. The hanging block m2 stops without bouncing when it strikes the floor. Consider the two blocks plus the Earth as the system.

(a) Find the speed at which m1 leaves the edge of the table.
(b) Find the impact speed of m1 on the floor.
(c) What is the shortest length of the string so that it does not go taut while m1 is in flight?
(d) Is the energy of the system when it is released from rest equal to the energy of the system just before m1 strikes the ground?
(e) Why or why not?