# Problem: A toy cannon uses a spring to project a 5.30-g soft rubber ball. The spring is originally compressed by 5.00 cm and has a force constant of 8.00 N/m. When the cannon is fired, the ball moves 15.0 cm through the horizontal barrel of the cannon, and the barrel exerts a constant friction force of 0.032 0 N on the ball.(a) With what speed does the projectile leave the barrel of the cannon?(b) At what point does the ball have maximum speed?(c) What is this maximum speed?

###### FREE Expert Solution

In this problem, we'll apply the conservation of energy to determine the speed of the ball.

Conservation of energy equation:

98% (283 ratings) ###### Problem Details

A toy cannon uses a spring to project a 5.30-g soft rubber ball. The spring is originally compressed by 5.00 cm and has a force constant of 8.00 N/m. When the cannon is fired, the ball moves 15.0 cm through the horizontal barrel of the cannon, and the barrel exerts a constant friction force of 0.032 0 N on the ball.

(a) With what speed does the projectile leave the barrel of the cannon?
(b) At what point does the ball have maximum speed?
(c) What is this maximum speed?

Frequently Asked Questions

What scientific concept do you need to know in order to solve this problem?

Our tutors have indicated that to solve this problem you will need to apply the Springs & Elastic Potential Energy concept. You can view video lessons to learn Springs & Elastic Potential Energy. Or if you need more Springs & Elastic Potential Energy practice, you can also practice Springs & Elastic Potential Energy practice problems.

What professor is this problem relevant for?

Based on our data, we think this problem is relevant for Professor McCormick's class at USF.

What textbook is this problem found in?

Our data indicates that this problem or a close variation was asked in Physics for Scientists and Engineers - Serway Calc 9th Edition. You can also practice Physics for Scientists and Engineers - Serway Calc 9th Edition practice problems.