Work By Gravity & Inclined Planes Video Lessons

Video Thumbnail

Concept

Problem: A boy in a wheelchair (total mass 47.0 kg) has speed 1.40 m/s at the crest of a slope 2.60 m high and 12.4 m long. At the bottom of the slope his speed is 6.20 m/s. Assume air resistance and rolling resistance can be modeled as a constant friction force of 41.0 N. Find the work he did in pushing forward on his wheels during the downhill ride.

FREE Expert Solution

This is a conservation of energy problem. We'll use several expressions of energy and the energy conservation equation.

Gravitational potential energy:

99% (401 ratings)
View Complete Written Solution
Problem Details

A boy in a wheelchair (total mass 47.0 kg) has speed 1.40 m/s at the crest of a slope 2.60 m high and 12.4 m long. At the bottom of the slope his speed is 6.20 m/s. Assume air resistance and rolling resistance can be modeled as a constant friction force of 41.0 N. Find the work he did in pushing forward on his wheels during the downhill ride.

Frequently Asked Questions

What scientific concept do you need to know in order to solve this problem?

Our tutors have indicated that to solve this problem you will need to apply the Work By Gravity & Inclined Planes concept. You can view video lessons to learn Work By Gravity & Inclined Planes. Or if you need more Work By Gravity & Inclined Planes practice, you can also practice Work By Gravity & Inclined Planes practice problems.

What professor is this problem relevant for?

Based on our data, we think this problem is relevant for Professor Maillis' class at UWM.

What textbook is this problem found in?

Our data indicates that this problem or a close variation was asked in Physics for Scientists and Engineers - Serway Calc 9th Edition. You can also practice Physics for Scientists and Engineers - Serway Calc 9th Edition practice problems.