Ch 01: Units & VectorsWorksheetSee all chapters
All Chapters
Ch 01: Units & Vectors
Ch 02: 1D Motion (Kinematics)
Ch 03: 2D Motion (Projectile Motion)
Ch 04: Intro to Forces (Dynamics)
Ch 05: Friction, Inclines, Systems
Ch 06: Centripetal Forces & Gravitation
Ch 07: Work & Energy
Ch 08: Conservation of Energy
Ch 09: Momentum & Impulse
Ch 10: Rotational Kinematics
Ch 11: Rotational Inertia & Energy
Ch 12: Torque & Rotational Dynamics
Ch 13: Rotational Equilibrium
Ch 14: Angular Momentum
Ch 15: Periodic Motion (NEW)
Ch 15: Periodic Motion (Oscillations)
Ch 16: Waves & Sound
Ch 17: Fluid Mechanics
Ch 18: Heat and Temperature
Ch 19: Kinetic Theory of Ideal Gasses
Ch 20: The First Law of Thermodynamics
Ch 21: The Second Law of Thermodynamics
Ch 22: Electric Force & Field; Gauss' Law
Ch 23: Electric Potential
Ch 24: Capacitors & Dielectrics
Ch 25: Resistors & DC Circuits
Ch 26: Magnetic Fields and Forces
Ch 27: Sources of Magnetic Field
Ch 28: Induction and Inductance
Ch 29: Alternating Current
Ch 30: Electromagnetic Waves
Ch 31: Geometric Optics
Ch 32: Wave Optics
Ch 34: Special Relativity
Ch 35: Particle-Wave Duality
Ch 36: Atomic Structure
Ch 37: Nuclear Physics
Ch 38: Quantum Mechanics

Solution: When an object falls through air, there is a drag force (with dimension M· L/T 2) that depends on the product of the surface area of the object and the square of its velocity; i.e., Fair = C Av2, where C is a constant. What is the dimension for constant C?1. [C] = M/T2. [C] = M/L33. [C] = M/L24. [C] = T•L/M5. [C] = T2•L2/M6. [C] = T•L2/M7. [C] = T2•L/M8. [C] = T/M9. [C] = M/T•L210. [C] = M/T2•L2

Solution: When an object falls through air, there is a drag force (with dimension M· L/T 2) that depends on the product of the surface area of the object and the square of its velocity; i.e., Fair = C Av2, wher

Problem

When an object falls through air, there is a drag force (with dimension M· L/T 2) that depends on the product of the surface area of the object and the square of its velocity; i.e., Fair = C Av2, where C is a constant. What is the dimension for constant C?

1. [C] = M/T

2. [C] = M/L3

3. [C] = M/L2

4. [C] = T•L/M

5. [C] = T2•L2/M

6. [C] = T•L2/M

7. [C] = T2•L/M

8. [C] = T/M

9. [C] = M/T•L2

10. [C] = M/T2•L2