Ch 09: Momentum & ImpulseWorksheetSee all chapters
All Chapters
Ch 01: Units & Vectors
Ch 02: 1D Motion (Kinematics)
Ch 03: 2D Motion (Projectile Motion)
Ch 04: Intro to Forces (Dynamics)
Ch 05: Friction, Inclines, Systems
Ch 06: Centripetal Forces & Gravitation
Ch 07: Work & Energy
Ch 08: Conservation of Energy
Ch 09: Momentum & Impulse
Ch 10: Rotational Kinematics
Ch 11: Rotational Inertia & Energy
Ch 12: Torque & Rotational Dynamics
Ch 13: Rotational Equilibrium
Ch 14: Angular Momentum
Ch 15: Periodic Motion (NEW)
Ch 15: Periodic Motion (Oscillations)
Ch 16: Waves & Sound
Ch 17: Fluid Mechanics
Ch 18: Heat and Temperature
Ch 19: Kinetic Theory of Ideal Gasses
Ch 20: The First Law of Thermodynamics
Ch 21: The Second Law of Thermodynamics
Ch 22: Electric Force & Field; Gauss' Law
Ch 23: Electric Potential
Ch 24: Capacitors & Dielectrics
Ch 25: Resistors & DC Circuits
Ch 26: Magnetic Fields and Forces
Ch 27: Sources of Magnetic Field
Ch 28: Induction and Inductance
Ch 29: Alternating Current
Ch 30: Electromagnetic Waves
Ch 31: Geometric Optics
Ch 32: Wave Optics
Ch 34: Special Relativity
Ch 35: Particle-Wave Duality
Ch 36: Atomic Structure
Ch 37: Nuclear Physics
Ch 38: Quantum Mechanics

Solution: A truck is stopped at a stop light on a street in San Francisco with an 18% grade (a 10° incline), facing down the incline. A distracted driver driving a sedan down the same road does not notice the r

Problem

A truck is stopped at a stop light on a street in San Francisco with an 18% grade (a 10° incline), facing down the incline. A distracted driver driving a sedan down the same road does not notice the red light, nor the truck, and collides with the back of the truck at full speed. The car and truck stick together after the collision and slide to a stop down the road. The police investigating the accident want to know if the car was going above the speed limit, set at 25 miles per hour. The police determine that the car and truck slid a distance of 4 m together after the collision. Determine if the car was speeding before it collided with the truck. A typical mass for a sedan is 1400 kg, while a truck has a mass of 2000 kg. The coefficient of kinetic friction between car tires and dry pavement is 0.6.