Springs & Elastic Potential Energy Video Lessons

Example

# Problem: A 1.86-kg block is held in place against the spring by an 81-N horizontal external force (see the figure). The external force is removed, and the block is projected with a velocity v1 = 1.2 m/s upon separation from the spring. The block descends a ramp and has a velocity v2 = 1.9 m/s at the bottom. The track is frictionless between points A and B. The block enters a rough section at B, extending to E. The coefficient of kinetic friction over this section is 0.28. The velocity of the block is v3 = 1.4 m/s at C. The block moves on to D, where it stops. The height h of the ramp is closest to _____. A. 15 cm B. 17 cm C. 11 cm D. 18 cm E. 7.3 cm

###### Problem Details

A 1.86-kg block is held in place against the spring by an 81-N horizontal external force (see the figure). The external force is removed, and the block is projected with a velocity v1 = 1.2 m/s upon separation from the spring. The block descends a ramp and has a velocity v2 = 1.9 m/s at the bottom. The track is frictionless between points A and B. The block enters a rough section at B, extending to E. The coefficient of kinetic friction over this section is 0.28. The velocity of the block is v3 = 1.4 m/s at C. The block moves on to D, where it stops. The height h of the ramp is closest to _____.

A. 15 cm

B. 17 cm

C. 11 cm

D. 18 cm

E. 7.3 cm

What scientific concept do you need to know in order to solve this problem?

Our tutors have indicated that to solve this problem you will need to apply the Springs & Elastic Potential Energy concept. You can view video lessons to learn Springs & Elastic Potential Energy. Or if you need more Springs & Elastic Potential Energy practice, you can also practice Springs & Elastic Potential Energy practice problems.

How long does this problem take to solve?

Our expert Physics tutor, Jeffery took 3 minutes and 47 seconds to solve this problem. You can follow their steps in the video explanation above.

What professor is this problem relevant for?

Based on our data, we think this problem is relevant for Professor Khondaker's class at UCF.