Ch 25: Resistors & DC CircuitsWorksheetSee all chapters
All Chapters
Ch 01: Units & Vectors
Ch 02: 1D Motion (Kinematics)
Ch 03: 2D Motion (Projectile Motion)
Ch 04: Intro to Forces (Dynamics)
Ch 05: Friction, Inclines, Systems
Ch 06: Centripetal Forces & Gravitation
Ch 07: Work & Energy
Ch 08: Conservation of Energy
Ch 09: Momentum & Impulse
Ch 10: Rotational Kinematics
Ch 11: Rotational Inertia & Energy
Ch 12: Torque & Rotational Dynamics
Ch 13: Rotational Equilibrium
Ch 14: Angular Momentum
Ch 15: Periodic Motion (NEW)
Ch 15: Periodic Motion (Oscillations)
Ch 16: Waves & Sound
Ch 17: Fluid Mechanics
Ch 18: Heat and Temperature
Ch 19: Kinetic Theory of Ideal Gasses
Ch 20: The First Law of Thermodynamics
Ch 21: The Second Law of Thermodynamics
Ch 22: Electric Force & Field; Gauss' Law
Ch 23: Electric Potential
Ch 24: Capacitors & Dielectrics
Ch 25: Resistors & DC Circuits
Ch 26: Magnetic Fields and Forces
Ch 27: Sources of Magnetic Field
Ch 28: Induction and Inductance
Ch 29: Alternating Current
Ch 30: Electromagnetic Waves
Ch 31: Geometric Optics
Ch 32: Wave Optics
Ch 34: Special Relativity
Ch 35: Particle-Wave Duality
Ch 36: Atomic Structure
Ch 37: Nuclear Physics
Ch 38: Quantum Mechanics

Solution: In the following figure, the configuration of resistors is known as a Wheatstone Bridge, which is used to measure the resistance of an unknown resistor (let's say R1 in our case). This is accomplished by varying the resistance of one of the outside resistors (let's say R5 in our case) until the resistance through the center of the bridge is zero. For our bridge, the battery produces 20 V and the fixed resistances are R2 = 10 Ω, R3 = 20 Ω, and R4 = 30 Ω. If the current through the center of the bridges is zero, and the current produced by the battery is 1 A, when R5 reaches a value of 15 Ω, what is the unknown resistance?

Problem

In the following figure, the configuration of resistors is known as a Wheatstone Bridge, which is used to measure the resistance of an unknown resistor (let's say R1 in our case). This is accomplished by varying the resistance of one of the outside resistors (let's say R5 in our case) until the resistance through the center of the bridge is zero. For our bridge, the battery produces 20 V and the fixed resistances are R2 = 10 Ω, R3 = 20 Ω, and R4 = 30 Ω. If the current through the center of the bridges is zero, and the current produced by the battery is 1 A, when R5 reaches a value of 15 Ω, what is the unknown resistance?