Converting Between Linear & Rotational Video Lessons

Video Thumbnail

Concept

Problem: A wheel of radius 0.300 m is mounted with frictionless bearings about an axle through its center. A light rope is wrapped around the wheel around the wheel and a block is suspended from the free end of the rope. When the system is released from rest, the block descends with a constant linear acceleration of 4.00 m/s2. As the block descends, what is the angular acceleration of the wheel (in rad/s2)?

FREE Expert Solution
86% (139 ratings)
Problem Details

A wheel of radius 0.300 m is mounted with frictionless bearings about an axle through its center. A light rope is wrapped around the wheel around the wheel and a block is suspended from the free end of the rope. When the system is released from rest, the block descends with a constant linear acceleration of 4.00 m/s2. As the block descends, what is the angular acceleration of the wheel (in rad/s2)?

Frequently Asked Questions

What scientific concept do you need to know in order to solve this problem?

Our tutors have indicated that to solve this problem you will need to apply the Converting Between Linear & Rotational concept. You can view video lessons to learn Converting Between Linear & Rotational. Or if you need more Converting Between Linear & Rotational practice, you can also practice Converting Between Linear & Rotational practice problems.

How long does this problem take to solve?

Our expert Physics tutor, Jeffery took 1 minute and 41 seconds to solve this problem. You can follow their steps in the video explanation above.