🤓 Based on our data, we think this question is relevant for Professor Nielsen's class at UVU.

Solution: A thin-walled hollow sphere with radius R = 0.050 m is released from rest at the top of an incline, a vertical distance of 2.0 m above the bottom of the incline. The moment of inertia of the sphere about the rotation axis through its center is (2/3) mR2. There is sufficient friction for the sphere to roll without slipping. What is the angular velocity of rotation of the sphere when it gets to the bottom of the incline?

Problem

A thin-walled hollow sphere with radius R = 0.050 m is released from rest at the top of an incline, a vertical distance of 2.0 m above the bottom of the incline. The moment of inertia of the sphere about the rotation axis through its center is (2/3) mR2. There is sufficient friction for the sphere to roll without slipping. What is the angular velocity of rotation of the sphere when it gets to the bottom of the incline?