Solution: A thin-walled hollow sphere with mass 5.0 kg and radius 0.20 m is rolling without slipping at the base of an incline that slopes upward at 37° above the horizontal. At the base of the incline the translational speed of the center of mass of the sphere is v = 12.0 m/s. If the sphere rolls without slipping as it travels up the incline, what is the maximum vertical height that it reaches before it starts to roll back down?

A thin-walled hollow sphere with mass 5.0 kg and radius 0.20 m is rolling without slipping at the base of an incline that slopes upward at 37° above the horizontal. At the base of the incline the translational speed of the center of mass of the sphere is v = 12.0 m/s. If the sphere rolls without slipping as it travels up the incline, what is the maximum vertical height that it reaches before it starts to roll back down?