This problem involves net torque and acceleration.

Net torque:

$\overline{){\mathit{\Sigma}}{\mathit{\tau}}{\mathbf{=}}{\mathit{I}}{\mathit{\alpha}}}$ where I is the moment of inertia.

The torque due to Force:

$\overline{){\mathit{\tau}}{\mathbf{=}}{\mathit{r}}{\mathit{F}}{\mathbf{sin}}{\mathit{\theta}}}$

Moment of inertia of a point mass:

$\overline{){\mathbf{I}}{\mathbf{}}{\mathbf{=}}{\mathbf{}}{\mathbf{m}}{{\mathbf{r}}}^{{\mathbf{2}}}}$

For a collection of point masses:

$\overline{){\mathbf{I}}{\mathbf{}}{\mathbf{=}}{\mathbf{}}{{\mathbf{m}}}_{{\mathbf{1}}}{{{\mathbf{r}}}_{{\mathbf{1}}}}^{{\mathbf{2}}}{\mathbf{}}{\mathbf{+}}{\mathbf{}}{{\mathbf{m}}}_{{\mathbf{2}}}{{{\mathbf{r}}}_{{\mathbf{2}}}}^{{\mathbf{2}}}{\mathbf{}}{\mathbf{+}}{\mathbf{}}{{\mathbf{m}}}_{{\mathbf{3}}}{{{\mathbf{r}}}_{{\mathbf{3}}}}^{{\mathbf{2}}}{\mathbf{}}{\mathbf{.}}{\mathbf{.}}{\mathbf{.}}{\mathbf{.}}}$

A light rigid rod with masses attached to its ends is pivoted about a horizontal axis as shown above. When released from rest in a horizontal orientation, the rod begins to rotate with an angular acceleration of magnitude

Frequently Asked Questions

What scientific concept do you need to know in order to solve this problem?

Our tutors have indicated that to solve this problem you will need to apply the Torque & Acceleration (Rotational Dynamics) concept. You can view video lessons to learn Torque & Acceleration (Rotational Dynamics). Or if you need more Torque & Acceleration (Rotational Dynamics) practice, you can also practice Torque & Acceleration (Rotational Dynamics) practice problems.