In this problem, we're going to use:

The equation for vector magnitude given by,

$\overline{)\mathbf{\left|}\stackrel{\mathbf{\rightharpoonup}}{\mathit{A}}\mathbf{\right|}{\mathbf{=}}\sqrt{{{\mathit{A}}_{\mathit{x}}}^{\mathbf{2}}\mathbf{+}{{\mathit{A}}_{\mathit{y}}}^{\mathbf{2}}}}$

Direction:

$\overline{){\mathbf{tan}}{\mathit{\theta}}{\mathbf{=}}\frac{{\mathit{A}}_{\mathit{y}}}{{\mathit{A}}_{\mathit{x}}}}$

Two forces are applied to a car in an effort to move it, as shown in Figure P4.12.

(a) What is the resultant of these two forces?

magnitude

direction

(b) If the car has a mass of 3100 kg, what magnitude acceleration does it have? Ignore friction.

Frequently Asked Questions

What scientific concept do you need to know in order to solve this problem?

Our tutors have indicated that to solve this problem you will need to apply the Forces in 2D concept. You can view video lessons to learn Forces in 2D. Or if you need more Forces in 2D practice, you can also practice Forces in 2D practice problems.

What professor is this problem relevant for?

Based on our data, we think this problem is relevant for Professor Aparicio-Bolano's class at UM.