Angular velocity:

$\overline{){\mathbf{\omega}}{\mathbf{=}}\frac{\mathbf{\u2206}\mathbf{\theta}}{\mathbf{\u2206}\mathbf{t}}}$

The slope of an angular position versus time graph is the angular velocity.

**1.**

(Figure 1) shows the angular-position-versus-time graph for a particle moving in a circle.

1.) What is the particle's angular velocity at *t* = 1 s? Express your answer using three significant figures.

ω = rad/s

2.) What is the particle's angular velocity at *t* = 4 s? Express your answer using three significant figures.

ω = rad/s

3.) What is the particle's angular velocity at *t* = 7 s? Express your answer using three significant figures.

ω = rad/s

Frequently Asked Questions

What scientific concept do you need to know in order to solve this problem?

Our tutors have indicated that to solve this problem you will need to apply the Rotational Velocity & Acceleration concept. You can view video lessons to learn Rotational Velocity & Acceleration. Or if you need more Rotational Velocity & Acceleration practice, you can also practice Rotational Velocity & Acceleration practice problems.

What professor is this problem relevant for?

Based on our data, we think this problem is relevant for Professor De Grandi's class at UTAH.