The magnetic force:

$\overline{){\mathbf{F}}{\mathbf{=}}{\mathbf{q}}{\mathbf{(}}{\mathbf{v}}{\mathbf{\times}}{\mathbf{B}}{\mathbf{)}}}$

We have the velocity, v as:

$\overline{){\mathbf{v}}{\mathbf{=}}{{\mathbf{v}}}_{{\mathbf{x}}}{\mathbf{i}}{\mathbf{+}}{{\mathbf{v}}}_{{\mathbf{y}}}{\mathbf{j}}{\mathbf{+}}{{\mathbf{v}}}_{{\mathbf{z}}}{\mathbf{k}}}$

Now, we have force as:

$\mathit{F}\mathbf{=}\mathit{q}\mathbf{\left|}\begin{array}{ccc}\mathbf{i}& \mathbf{j}& \mathbf{k}\\ {\mathbf{v}}_{\mathbf{x}}& {\mathbf{v}}_{\mathbf{y}}& {\mathbf{v}}_{\mathbf{z}}\\ {\mathbf{B}}_{\mathbf{x}}& {\mathbf{B}}_{\mathbf{y}}& {\mathbf{B}}_{\mathbf{z}}\end{array}\mathbf{\right|}$

A particle with a charge of q = -5.00 nC is moving in a uniform magnetic field of B = (-1.30 T) k. The magnetic force on the particle is measured to be F = (-7.60x10^{-7} N) J

A) Can *v** _{y}*, the

B) Calculate *v** _{x}*, the

C) Can *v** _{z}*, the z component of velocity be determined?

Frequently Asked Questions

What scientific concept do you need to know in order to solve this problem?

Our tutors have indicated that to solve this problem you will need to apply the Magnetic Force on Current-Carrying Wire concept. You can view video lessons to learn Magnetic Force on Current-Carrying Wire. Or if you need more Magnetic Force on Current-Carrying Wire practice, you can also practice Magnetic Force on Current-Carrying Wire practice problems.