This question has two parts: motion without acceleration and motion with acceleration.

Rotational kinematic equations:

$\overline{){{\mathbf{\omega}}}_{{\mathbf{f}}}{\mathbf{=}}{{\mathbf{\omega}}}_{{\mathbf{0}}}{\mathbf{}}{\mathbf{+}}{\mathbf{}}{\mathbf{\alpha}}{\mathbf{t}}\phantom{\rule{0ex}{0ex}}{\mathbf{\u2206}}{\mathbf{\theta}}{\mathbf{=}}\frac{\mathbf{1}}{\mathbf{2}}{\mathbf{(}}{{\mathbf{\omega}}}_{{\mathbf{0}}}{\mathbf{+}}{{\mathbf{\omega}}}_{{\mathbf{f}}}{\mathbf{)}}{\mathbf{t}}\phantom{\rule{0ex}{0ex}}{\mathbf{\u2206}}{\mathbf{\theta}}{\mathbf{=}}{{\mathbf{\omega}}}_{{\mathbf{0}}}{\mathbf{t}}{\mathbf{}}{\mathbf{+}}\frac{\mathbf{1}}{\mathbf{2}}{\mathbf{\alpha}}{{\mathbf{t}}}^{{\mathbf{2}}}\phantom{\rule{0ex}{0ex}}{{\mathbf{\omega}}}_{{\mathbf{f}}}^{{\mathbf{2}}}{\mathbf{=}}{{\mathbf{\omega}}}_{{\mathbf{0}}}^{{\mathbf{2}}}{\mathbf{+}}{\mathbf{2}}{\mathbf{\alpha}}{\mathbf{\u2206}}{\mathbf{\theta}}}$

Dario, a prep cook at an Italian restaurant, spins a salad spinner and observes that it rotates 20.0 times in 5.00 seconds and then stops spinning it. The salad spinner rotates 6.00 more times before it comes to rest. Assume that the spinner slows down with constant angular acceleration. What is the angular acceleration of the salad spinner as it slows down in rad/s^{2}?

Frequently Asked Questions

What scientific concept do you need to know in order to solve this problem?

Our tutors have indicated that to solve this problem you will need to apply the Equations of Rotational Motion concept. You can view video lessons to learn Equations of Rotational Motion. Or if you need more Equations of Rotational Motion practice, you can also practice Equations of Rotational Motion practice problems.