We use the cross product formula:

$\overline{)\stackrel{\mathbf{\rightharpoonup}}{\mathit{A}}{\mathbf{\times}}\stackrel{\mathbf{\rightharpoonup}}{\mathit{B}}{\mathbf{=}}{\mathbf{(}}{{\mathit{A}}}_{{\mathit{y}}}{{\mathit{B}}}_{{\mathit{z}}}{\mathbf{-}}{{\mathit{A}}}_{{\mathit{z}}}{{\mathit{B}}}_{{\mathit{y}}}{\mathbf{)}}{\mathbf{}}\hat{\mathbf{i}}{\mathbf{+}}{\mathbf{(}}{{\mathit{A}}}_{{\mathit{z}}}{{\mathit{B}}}_{{\mathit{x}}}{\mathbf{-}}{{\mathit{A}}}_{{\mathit{x}}}{{\mathit{B}}}_{{\mathit{z}}}{\mathbf{)}}{\mathbf{}}\hat{\mathbf{j}}{\mathbf{+}}{\mathbf{(}}{{\mathit{A}}}_{{\mathit{x}}}{{\mathit{B}}}_{{\mathit{y}}}{\mathbf{-}}{{\mathit{A}}}_{{\mathit{y}}}{{\mathit{B}}}_{{\mathit{x}}}{\mathbf{)}}{\mathbf{}}\hat{\mathbf{k}}}$

In this exercise, you will be be finding the resultant torque from the cross product of a lever arm with a force vector. The lever arm vector is: A = 2.0i + 3.0j. The force vector is: B = 3.0i + 4.0j. Assume that A is given in meters and that B is given in Newtons.

A. Find the resulting vector A x B (express your answer in unit vector notation).

B. Find the resulting vector B x A (express your answer in unit vector notation).

C. Find the resulting vector 2A x 3B (express your answer in unit vector notation).

Frequently Asked Questions

What scientific concept do you need to know in order to solve this problem?

Our tutors have indicated that to solve this problem you will need to apply the Calculating Cross Product Using Components concept. If you need more Calculating Cross Product Using Components practice, you can also practice Calculating Cross Product Using Components practice problems.