We are required to use Bernoulli's equation to determine the pressure at the outlet.

Bernoulli's equation:

$\overline{){{\mathbf{P}}}_{{\mathbf{1}}}{\mathbf{+}}\frac{\mathbf{1}}{\mathbf{2}}{\mathbf{\rho}}{{{\mathbf{v}}}_{{\mathbf{1}}}}^{{\mathbf{2}}}{\mathbf{+}}{{\mathbf{h}}}_{{\mathbf{1}}}{\mathbf{\rho}}{\mathbf{g}}{\mathbf{=}}{{\mathbf{P}}}_{{\mathbf{2}}}{\mathbf{+}}\frac{\mathbf{1}}{\mathbf{2}}{\mathbf{\rho}}{{\mathbf{v}}_{\mathbf{2}}}^{{\mathbf{2}}}{\mathbf{+}}{{\mathbf{h}}}_{{\mathbf{2}}}{\mathbf{\rho}}{\mathbf{g}}}$

What does the top pressure gauge in the figure read?

Frequently Asked Questions

What scientific concept do you need to know in order to solve this problem?

Our tutors have indicated that to solve this problem you will need to apply the Bernoulli's Equation concept. If you need more Bernoulli's Equation practice, you can also practice Bernoulli's Equation practice problems.

What professor is this problem relevant for?

Based on our data, we think this problem is relevant for Professor Gentile's class at RUTGERS.