# Problem: Let V1 and V2 be different vectors with lengths V1 and V2, respectively.Part A - Magnitude of the cross product of two perpendicular vectorsIf V1 and V2 are perpendicular, calculate |V1xV2|Part B - Magnitude of the cross product of two parallel vectorsIf V1 and V2 are perpendicular, calculate |V1xV2|

###### FREE Expert Solution

The magnitude of vector cross product:

$\overline{){\mathbf{|}}\stackrel{\mathbf{⇀}}{\mathbf{P}}{\mathbf{×}}\stackrel{\mathbf{⇀}}{\mathbf{Q}}{\mathbf{|}}{\mathbf{=}}{\mathbf{P}}{\mathbf{Q}}{\mathbf{s}}{\mathbf{i}}{\mathbf{n}}{\mathbf{\theta }}}$

Where P is the magnitude of $\stackrel{\mathbf{⇀}}{\mathbf{P}}$, Q is the magnitude of $\stackrel{\mathbf{⇀}}{\mathbf{Q}}$, and θ is the angle between the vectors $\stackrel{\mathbf{⇀}}{\mathbf{P}}$ and $\stackrel{\mathbf{⇀}}{\mathbf{Q}}$.

95% (425 ratings)
###### Problem Details

Let V1 and V2 be different vectors with lengths V1 and V2, respectively.

Part A - Magnitude of the cross product of two perpendicular vectors
If V1 and V2 are perpendicular, calculate |V1xV2|

Part B - Magnitude of the cross product of two parallel vectors
If V1 and V2 are perpendicular, calculate |V1xV2|