Current:

$\overline{){{\mathbf{i}}}_{{\mathbf{c}}}{\mathbf{=}}{{\mathbf{I}}}_{{\mathbf{c}}}{\mathbf{c}}{\mathbf{o}}{\mathbf{s}}{\mathbf{(}}{\mathbf{\omega}}{\mathbf{t}}{\mathbf{-}}\frac{\mathbf{\pi}}{\mathbf{2}}{\mathbf{)}}}$

If i_{c} = I_{c}, then we will have:

$\begin{array}{rcl}{\mathbf{i}}_{\mathbf{c}}& \mathbf{=}& {\mathbf{i}}_{\mathbf{c}}\mathbf{c}\mathbf{o}\mathbf{s}\mathbf{(}\mathbf{\omega}\mathbf{t}\mathbf{-}\frac{\mathbf{\pi}}{\mathbf{2}}\mathbf{)}\\ \mathbf{1}& \mathbf{=}& \mathbf{c}\mathbf{o}\mathbf{s}\mathbf{(}\mathbf{\omega}\mathbf{t}\mathbf{-}\frac{\mathbf{\pi}}{\mathbf{2}}\mathbf{)}\end{array}$

A 25 nF capacitor is connected across an AC generator that produces a peak voltage of 5.4 V. What is the instantaneous value of the emf at the instant when ic=Ic?

Frequently Asked Questions

What scientific concept do you need to know in order to solve this problem?

Our tutors have indicated that to solve this problem you will need to apply the RMS Current and Voltage concept. You can view video lessons to learn RMS Current and Voltage. Or if you need more RMS Current and Voltage practice, you can also practice RMS Current and Voltage practice problems.