Uniform accelerated motion (UAM) equations, a.k.a. "kinematics equations":

$\overline{)\mathbf{}{{\mathit{v}}}_{{\mathit{f}}}{\mathbf{}}{\mathbf{=}}{\mathbf{}}{{\mathit{v}}}_{{\mathbf{0}}}{\mathbf{}}{\mathbf{+}}{\mathit{a}}{\mathit{t}}\phantom{\rule{0ex}{0ex}}{\mathbf{\u2206}}{\mathit{x}}{\mathbf{=}}{\mathbf{}}\mathbf{\left(}\frac{{\mathit{v}}_{\mathit{f}}\mathbf{+}{\mathit{v}}_{\mathbf{0}}}{\mathbf{2}}\mathbf{\right)}{\mathit{t}}\phantom{\rule{0ex}{0ex}}{\mathbf{\u2206}}{\mathit{x}}{\mathbf{=}}{\mathbf{}}{{\mathit{v}}}_{{\mathbf{0}}}{\mathit{t}}{\mathbf{+}}{\frac{1}{2}}{\mathit{a}}{{\mathit{t}}}^{{\mathbf{2}}}\phantom{\rule{0ex}{0ex}}{\mathbf{}}{{{\mathit{v}}}_{{\mathit{f}}}}^{{\mathbf{2}}}{\mathbf{=}}{\mathbf{}}{{{\mathit{v}}}_{{\mathbf{0}}}}^{{\mathbf{2}}}{\mathbf{}}{\mathbf{+}}{\mathbf{2}}{\mathit{a}}{\mathbf{\u2206}}{\mathit{x}}}$

**a.**

The fundamental kinematic equation for displacement is given by:

Δx = v_{0}t + (1/2)at^{2}

The position equation is x = v_{0}t + (1/2)at^{2}

Therefore, the equation x = v_{0}t + (1/2)at^{2} cannot be position equation.

a. What equation gives the *position* at a specific time for an object with constant acceleration?

b. The position versus time graph of a body undergoing constant acceleration is a _____

c. What equation gives the *velocity* at a specific time for an object with constant acceleration?

d. The equation of the velocity versus time of a body undergoing constant acceleration is a ____

Frequently Asked Questions

What scientific concept do you need to know in order to solve this problem?

Our tutors have indicated that to solve this problem you will need to apply the Kinematics Equations concept. You can view video lessons to learn Kinematics Equations. Or if you need more Kinematics Equations practice, you can also practice Kinematics Equations practice problems.