Thin Lens And Lens Maker Equations Video Lessons

Concept

# Problem: A converging lens with a focal length of 50 cm and a diverging lens with a focal length of -48 cm are 223 cm apart. A 2.4-cm-tall object is 70 cm in front of the converging lens.Part ACalculate the distance between the final image and the diverging lens.Part BCalculate the image height.

###### FREE Expert Solution

Lens equation:
$\overline{)\frac{\mathbf{1}}{{\mathbit{s}}_{\mathbit{o}}}{\mathbf{+}}\frac{\mathbf{1}}{{\mathbit{s}}_{\mathbit{i}}}{\mathbf{=}}\frac{\mathbf{1}}{\mathbit{f}}}$

Magnification:

$\overline{){\mathbf{m}}{\mathbf{=}}\frac{{\mathbf{h}}_{\mathbf{i}}}{{\mathbf{h}}_{\mathbf{o}}}{\mathbf{=}}{\mathbf{-}}\frac{{\mathbf{s}}_{\mathbf{i}}}{{\mathbf{s}}_{\mathbf{o}}}}$

Part A

We're given:

f1 = 50 cm

f2 = - 48 cm

ho = 2.4 cm

so = 70 cm

For the conversing lens using the lens equation:

1/50 = 1/si + 1/70

79% (128 ratings)
###### Problem Details

A converging lens with a focal length of 50 cm and a diverging lens with a focal length of -48 cm are 223 cm apart. A 2.4-cm-tall object is 70 cm in front of the converging lens.

Part A

Calculate the distance between the final image and the diverging lens.

Part B

Calculate the image height.