Uniform accelerated motion (UAM) equations:

$\overline{)\mathbf{}{{\mathit{v}}}_{{\mathit{f}}}{\mathbf{}}{\mathbf{=}}{\mathbf{}}{{\mathit{v}}}_{{\mathbf{0}}}{\mathbf{}}{\mathbf{-}}{\mathit{g}}{\mathit{t}}\phantom{\rule{0ex}{0ex}}{\mathbf{\u2206}}{\mathit{y}}{\mathbf{=}}{\mathbf{}}\mathbf{\left(}\frac{{\mathit{v}}_{\mathit{f}}\mathbf{+}{\mathit{v}}_{\mathbf{0}}}{\mathbf{2}}\mathbf{\right)}{\mathit{t}}\phantom{\rule{0ex}{0ex}}{\mathbf{\u2206}}{\mathit{y}}{\mathbf{=}}{\mathbf{}}{{\mathit{v}}}_{{\mathbf{0}}}{\mathit{t}}{\mathbf{-}}\frac{\mathbf{1}}{\mathbf{2}}{\mathit{g}}{{\mathit{t}}}^{{\mathbf{2}}}\phantom{\rule{0ex}{0ex}}{\mathbf{}}{{{\mathit{v}}}_{{\mathit{f}}}}^{{\mathbf{2}}}{\mathbf{=}}{\mathbf{}}{{{\mathit{v}}}_{{\mathbf{0}}}}^{{\mathbf{2}}}{\mathbf{}}{\mathbf{-}}{\mathbf{2}}{\mathit{g}}{\mathbf{\u2206}}{\mathit{y}}}$

We'll determine the flight time using the vertical motion. Once we have the flight time, we'll be able to calculate the range.

A tiger leaps horizontally from a 6.5m rock with a speed of 3.2 m/s. How far from the base of the rock will she land?

Frequently Asked Questions

What scientific concept do you need to know in order to solve this problem?

Our tutors have indicated that to solve this problem you will need to apply the Projectile Motion: Horizontal & Negative Launch concept. If you need more Projectile Motion: Horizontal & Negative Launch practice, you can also practice Projectile Motion: Horizontal & Negative Launch practice problems.

What professor is this problem relevant for?

Based on our data, we think this problem is relevant for Professor Yang's class at OSU.