Capacitance:

$\overline{){\mathit{C}}{\mathbf{=}}\frac{{\mathit{\epsilon}}_{\mathbf{0}}\mathit{A}}{\mathit{d}}}$

Potential difference:

$\overline{){\mathbf{V}}{\mathbf{=}}\frac{\mathbf{Q}}{\mathbf{C}}}$

Electric field:

$\overline{){\mathbf{E}}{\mathbf{=}}\frac{\mathbf{V}}{\mathbf{d}}}$

**a)**

$\mathit{C}\mathbf{=}\frac{\mathbf{(}\mathbf{8}\mathbf{.}\mathbf{85}\mathbf{\times}{\mathbf{10}}^{\mathbf{-}\mathbf{12}}\mathbf{)}{\mathbf{(}\mathbf{2}\mathbf{.}\mathbf{50}\mathbf{\times}\mathbf{10}\mathbf{-}\mathbf{2}\mathbf{)}}^{\mathbf{2}}}{\mathbf{1}\mathbf{.}\mathbf{50}\mathbf{\times}{\mathbf{10}}^{\mathbf{-}\mathbf{3}}}$

Two 2.50 cm × 2.50 cm plates that form a parallel-plate capacitor are charged to ± 0.708 nC.

a) What is potential difference across the capacitor if the spacing between the plates is 1.50 mm?

b) What is the electric field strength inside the capacitor if the spacing between the plates is 1.50 mm?

Frequently Asked Questions

What scientific concept do you need to know in order to solve this problem?

Our tutors have indicated that to solve this problem you will need to apply the Parallel Plate Capacitors concept. You can view video lessons to learn Parallel Plate Capacitors. Or if you need more Parallel Plate Capacitors practice, you can also practice Parallel Plate Capacitors practice problems.