Bernoulli's equation:

$\overline{){{\mathbf{P}}}_{{\mathbf{1}}}{\mathbf{+}}\frac{\mathbf{1}}{\mathbf{2}}{\mathbf{\rho}}{{{\mathbf{v}}}_{{\mathbf{1}}}}^{{\mathbf{2}}}{\mathbf{+}}{\mathbf{\rho}}{\mathbf{g}}{{\mathbf{h}}}_{{\mathbf{1}}}{\mathbf{=}}{{\mathbf{P}}}_{{\mathbf{2}}}{\mathbf{+}}\frac{\mathbf{1}}{\mathbf{2}}{\mathbf{\rho}}{{\mathbf{v}}_{\mathbf{2}}}^{{\mathbf{2}}}{\mathbf{+}}{\mathbf{\rho}}{\mathbf{g}}{{\mathbf{h}}}_{{\mathbf{2}}}}$

The first term is the pressure energy, the second term is the kinetic energy per unit volume, and the third term is the potential energy per unit volume.

Bernoulli's equation is a relationship between a fluid's ______ and ______.

A. mass/density

B. temperature/volume

C. volume/pressure

D. speed/pressure

Frequently Asked Questions

What scientific concept do you need to know in order to solve this problem?

Our tutors have indicated that to solve this problem you will need to apply the Bernoulli's Equation concept. If you need more Bernoulli's Equation practice, you can also practice Bernoulli's Equation practice problems.