Current:

$\overline{){\mathit{I}}{\mathbf{=}}\frac{\mathbf{V}}{\mathbf{R}}}$

Equivalent resistance for 2 resistors in parallel:

$\overline{){{\mathbf{R}}}_{{\mathbf{eq}}}{\mathbf{=}}\frac{{\mathbf{R}}_{\mathbf{1}}{\mathbf{R}}_{\mathbf{2}}}{{\mathbf{R}}_{\mathbf{1}}\mathbf{+}{\mathbf{R}}_{\mathbf{2}}}}$

Equivalent resistance for resistors in series:

$\overline{){{\mathbf{R}}}_{{\mathbf{eq}}}{\mathbf{=}}{{\mathbf{R}}}_{{\mathbf{1}}}{\mathbf{+}}{{\mathbf{R}}}_{{\mathbf{2}}}{\mathbf{+}}{\mathbf{.}}{\mathbf{.}}{\mathbf{.}}{\mathbf{+}}{{\mathbf{R}}}_{{\mathbf{n}}}}$

When the resistors are in series:

${\mathit{I}}_{\mathbf{s}}\mathbf{=}\frac{\mathbf{\epsilon}}{{\mathbf{R}}_{\mathbf{1}}\mathbf{+}{\mathbf{R}}_{\mathbf{2}}}$

Two resistors of resistances R1 and R2 with R2 > R1 are connected to a voltage source with voltage V. When the resistors are connected in series, the current is Is. When the resistors are connected in parallel, the current Ip from the source is equal to 10 Is

Let r be the ratio R1/R2, find r

Frequently Asked Questions

What scientific concept do you need to know in order to solve this problem?

Our tutors have indicated that to solve this problem you will need to apply the Resistors in AC Circuits concept. You can view video lessons to learn Resistors in AC Circuits. Or if you need more Resistors in AC Circuits practice, you can also practice Resistors in AC Circuits practice problems.