# Problem: Two resistors of resistances R1 and R2 with R2 &gt; R1 are connected to a voltage source with voltage V. When the resistors are connected in series, the current is Is. When the resistors are connected in parallel, the current Ip from the source is equal to 10 IsLet r be the ratio R1/R2, find r

###### FREE Expert Solution

Current:

$\overline{){\mathbit{I}}{\mathbf{=}}\frac{\mathbf{V}}{\mathbf{R}}}$

Equivalent resistance for 2 resistors in parallel:

$\overline{){{\mathbf{R}}}_{{\mathbf{eq}}}{\mathbf{=}}\frac{{\mathbf{R}}_{\mathbf{1}}{\mathbf{R}}_{\mathbf{2}}}{{\mathbf{R}}_{\mathbf{1}}\mathbf{+}{\mathbf{R}}_{\mathbf{2}}}}$

Equivalent resistance for resistors in series:

$\overline{){{\mathbf{R}}}_{{\mathbf{eq}}}{\mathbf{=}}{{\mathbf{R}}}_{{\mathbf{1}}}{\mathbf{+}}{{\mathbf{R}}}_{{\mathbf{2}}}{\mathbf{+}}{\mathbf{.}}{\mathbf{.}}{\mathbf{.}}{\mathbf{+}}{{\mathbf{R}}}_{{\mathbf{n}}}}$

When the resistors are in series:

${\mathbit{I}}_{\mathbf{s}}\mathbf{=}\frac{\mathbf{\epsilon }}{{\mathbf{R}}_{\mathbf{1}}\mathbf{+}{\mathbf{R}}_{\mathbf{2}}}$

93% (382 ratings) ###### Problem Details

Two resistors of resistances R1 and R2 with R2 > R1 are connected to a voltage source with voltage V. When the resistors are connected in series, the current is Is. When the resistors are connected in parallel, the current Ip from the source is equal to 10 Is

Let r be the ratio R1/R2, find r