2D vector Direction/Components:

$\overline{){\mathbf{tan}}{\mathbf{\theta}}{\mathbf{=}}\frac{\mathbf{y}}{\mathbf{x}}}$

$\overline{)\begin{array}{rcl}{\mathbf{F}}_{\mathbf{x}}& {\mathbf{=}}& \mathbf{\left|}\stackrel{\mathbf{\rightharpoonup}}{\mathbf{F}}\mathbf{\right|}\mathbf{}\mathbf{cos}\mathbf{}\mathbf{\theta}\\ {\mathbf{F}}_{\mathbf{y}}& {\mathbf{=}}& \mathbf{\left|}\stackrel{\mathbf{\rightharpoonup}}{\mathbf{F}}\mathbf{\right|}\mathbf{}\mathbf{sin}\mathbf{}\mathbf{\theta}\end{array}}$

**29 lb force**

θ = tan^{-1} (y/x) = tan^{-1} (80/84) = 43.6°

F_{x} = Fcosθ = 29cos43.6 = 21.0 lb

F_{y} = Fsinθ = 29sin43.6 = 20.0 lb

Determine the x and y components of each of the forces shown.

Frequently Asked Questions

What scientific concept do you need to know in order to solve this problem?

Our tutors have indicated that to solve this problem you will need to apply the Forces with Unit Vectors concept. If you need more Forces with Unit Vectors practice, you can also practice Forces with Unit Vectors practice problems.