Problem: Relativistic Energy and MomentumLearning Goal:To learn to calculate energy and momentum for relativistic particles and, from the relativistic equations, to find relations between a particle's energy and its momentum through its mass.The relativistic momentum p and energy E of a particle with mass m moving with velocity v are given byandWhat is the rest mass m of a particle traveling with the speed of light in the laboratory frame.Express your answer in MeV/c2 to one decimal place.HintsHint 1. Equations for momentum and energyCompare the equations for energy and momentum if v=1.0c. What do you find when you plug these into E2−(pc)2 = m2c4?

FREE Expert Solution

The equivalence between mass and energy in the expression E2−(pc)= m2c4 gives the rest mass of a particle.
E2=m2c41-v2c2

(pc)2=m2v2c21-v2c2

Taking the condition, v = 1.0c

View Complete Written Solution
Problem Details

Relativistic Energy and Momentum

Learning Goal:

To learn to calculate energy and momentum for relativistic particles and, from the relativistic equations, to find relations between a particle's energy and its momentum through its mass.

The relativistic momentum p and energy E of a particle with mass m moving with velocity v are given by

and


What is the rest mass m of a particle traveling with the speed of light in the laboratory frame.

Express your answer in MeV/c2 to one decimal place.

Hints

Hint 1. Equations for momentum and energy

Compare the equations for energy and momentum if v=1.0c. What do you find when you plug these into 

E2−(pc)= m2c4?

Frequently Asked Questions

What scientific concept do you need to know in order to solve this problem?

Our tutors have indicated that to solve this problem you will need to apply the Particle-Wave Duality concept. You can view video lessons to learn Particle-Wave Duality. Or if you need more Particle-Wave Duality practice, you can also practice Particle-Wave Duality practice problems.