# Problem: Rank the transformers on the basis of their rms secondary voltage. Rank from largest to smallest. To rank items as equivalent, overlap them.#1Vp=240VNp=1000turnsNs=2000turns#2Vp=480VNp=4000turnsNs=2000turns#3Vp=480VNp=2000turnsNs=1000turns#4Vp=120VNp=500turnsNs=2000turns#5Vp=240VNp=1000turnsNs=500turns100 A of rms current is incident on the primary side of each transformer.

###### FREE Expert Solution

The transformer equation:

$\overline{)\frac{{\mathbf{V}}_{\mathbf{p}}}{{\mathbf{V}}_{\mathbf{s}}}{\mathbf{=}}\frac{{\mathbf{I}}_{\mathbf{s}}}{{\mathbf{I}}_{\mathbf{p}}}{\mathbf{=}}\frac{{\mathbf{N}}_{\mathbf{p}}}{{\mathbf{N}}_{\mathbf{s}}}}$

Relating voltage and the number of turns, then solving for Vs:

$\overline{){{\mathbf{V}}}_{{\mathbf{s}}}{\mathbf{=}}\frac{{\mathbf{V}}_{\mathbf{p}}{\mathbf{N}}_{\mathbf{s}}}{{\mathbf{N}}_{\mathbf{p}}}}$

The rms secondary voltage is:

$\overline{){{\mathbf{V}}}_{{\mathbf{s}}}{\mathbf{\left(}}{\mathbf{rms}}{\mathbf{\right)}}{\mathbf{=}}\frac{{\mathbf{V}}_{\mathbf{p}}{\mathbf{N}}_{\mathbf{s}}}{\sqrt{\mathbf{2}}{\mathbf{N}}_{\mathbf{p}}}}$

#1

${{\mathbf{V}}}_{{\mathbf{s}}}{\mathbf{\left(}}{\mathbf{rms}}{\mathbf{\right)}}{\mathbf{=}}\frac{\mathbf{\left(}\mathbf{240}\mathbf{\right)}\mathbf{\left(}\mathbf{2000}\mathbf{\right)}}{\sqrt{\mathbf{2}}\mathbf{\left(}\mathbf{1000}\mathbf{\right)}}$

vs(rms) = 339.4 V

79% (461 ratings) ###### Problem Details

Rank the transformers on the basis of their rms secondary voltage. Rank from largest to smallest. To rank items as equivalent, overlap them.

#1

Vp=240V
Np=1000turns
Ns=2000turns

#2

Vp=480V
Np=4000turns
Ns=2000turns

#3

Vp=480V
Np=2000turns
Ns=1000turns

#4

Vp=120V
Np=500turns
Ns=2000turns

#5

Vp=240V
Np=1000turns
Ns=500turns

100 A of rms current is incident on the primary side of each transformer.