Uniform accelerated motion (UAM) equations:

$\overline{)\mathbf{}{{\mathit{v}}}_{{\mathit{f}}}{\mathbf{}}{\mathbf{=}}{\mathbf{}}{{\mathit{v}}}_{{\mathbf{0}}}{\mathbf{}}{\mathbf{+}}{\mathit{a}}{\mathit{t}}\phantom{\rule{0ex}{0ex}}{\mathbf{\u2206}}{\mathit{x}}{\mathbf{=}}{\mathbf{}}\mathbf{\left(}\frac{{\mathit{v}}_{\mathit{f}}\mathbf{+}{\mathit{v}}_{\mathbf{0}}}{\mathbf{2}}\mathbf{\right)}{\mathit{t}}\phantom{\rule{0ex}{0ex}}{\mathbf{\u2206}}{\mathit{x}}{\mathbf{=}}{\mathbf{}}{{\mathit{v}}}_{{\mathbf{0}}}{\mathit{t}}{\mathbf{+}}{\frac{1}{2}}{\mathit{a}}{{\mathit{t}}}^{{\mathbf{2}}}\phantom{\rule{0ex}{0ex}}{\mathbf{}}{{{\mathit{v}}}_{{\mathit{f}}}}^{{\mathbf{2}}}{\mathbf{=}}{\mathbf{}}{{{\mathit{v}}}_{{\mathbf{0}}}}^{{\mathbf{2}}}{\mathbf{}}{\mathbf{+}}{\mathbf{2}}{\mathit{a}}{\mathbf{\u2206}}{\mathit{x}}}$

Newton's second law:

$\overline{){\mathbf{\Sigma}}{\mathbf{F}}{\mathbf{=}}{\mathbf{m}}{\mathbf{a}}}$

ΣF = - f

a = - f/m = - 24/24 = - 1 m/s^{2}

In Figure 4.7, the net external force on the 24-kg mower is stated to be 51 N. The force of friction opposing the motion in 24 N.

Suppose the mower is moving at 1.5 m/s when the force F is removed. How far will the mower go before stopping?

Frequently Asked Questions

What scientific concept do you need to know in order to solve this problem?

Our tutors have indicated that to solve this problem you will need to apply the Force Problems with Motion concept. You can view video lessons to learn Force Problems with Motion. Or if you need more Force Problems with Motion practice, you can also practice Force Problems with Motion practice problems.