Lens maker equation:

$\overline{)\frac{\mathbf{1}}{{\mathbf{s}}_{\mathbf{o}}}{\mathbf{+}}\frac{\mathbf{1}}{{\mathbf{s}}_{\mathbf{i}}}{\mathbf{=}}\frac{\mathbf{1}}{\mathbf{f}}}$

Magnification:

$\overline{){\mathbf{m}}{\mathbf{=}}\frac{\mathbf{-}{\mathbf{s}}_{\mathbf{i}}}{{\mathbf{s}}_{\mathbf{o}}}}$

Focal length from the radius of curvature is:

$\overline{){\mathbf{f}}{\mathbf{=}}\frac{\mathbf{R}}{\mathbf{2}}}$

A shopper standing 3.00 m from a convex security mirror sees his image with a magnification of 0.250.

(a) Where is his image?

(b) What is the focal length of the mirror?

(c) What is its radius of curvature?

Frequently Asked Questions

What scientific concept do you need to know in order to solve this problem?

Our tutors have indicated that to solve this problem you will need to apply the Thin Lens And Lens Maker Equations concept. You can view video lessons to learn Thin Lens And Lens Maker Equations. Or if you need more Thin Lens And Lens Maker Equations practice, you can also practice Thin Lens And Lens Maker Equations practice problems.