# Problem: A combination of series and parallel connections of capacitors is shown in the figure. The sizes of these capacitors are given by the following data:C1 = 5.4 μFC2 = 3.7 μFC3 = 8.1 μFC4 = 1.2 μFC5 = 0.65 μFC6 = 14 μFFind the total capacitance of the combination of capacitors in microfarads

###### FREE Expert Solution

Equivalent capacitance for series connection:

$\overline{)\frac{\mathbf{1}}{{\mathbf{C}}_{\mathbf{e}\mathbf{q}}}{\mathbf{=}}\frac{\mathbf{1}}{{\mathbf{C}}_{\mathbf{1}}}{\mathbf{+}}\frac{\mathbf{1}}{{\mathbf{C}}_{\mathbf{2}}}{\mathbf{+}}{\mathbf{.}}{\mathbf{.}}{\mathbf{.}}{\mathbf{+}}\frac{\mathbf{1}}{{\mathbf{C}}_{\mathbf{n}}}}$

Equivalent capacitance for parallel connection:

$\overline{){{\mathbf{C}}}_{\mathbf{e}\mathbf{q}}{\mathbf{=}}{{\mathbf{C}}}_{{\mathbf{1}}}{\mathbf{+}}{{\mathbf{C}}}_{{\mathbf{2}}}{\mathbf{+}}{\mathbf{.}}{\mathbf{.}}{\mathbf{.}}{\mathbf{+}}{{\mathbf{C}}}_{{\mathbf{n}}}}$

C1 and C2 are in series.

1/C12 = 1/5.4 + 1/3.7 = 0.455455455

C12 = 2.2  μF

C5 and C6 are in parallel.

C56 = 0.65 + 16 = 16.65 μF ###### Problem Details

A combination of series and parallel connections of capacitors is shown in the figure. The sizes of these capacitors are given by the following data:

C1 = 5.4 μF

C2 = 3.7 μF

C3 = 8.1 μF

C4 = 1.2 μF

C5 = 0.65 μF

C6 = 14 μF Find the total capacitance of the combination of capacitors in microfarads