Vector direction:

$\overline{){\mathbf{tan}}{\mathbf{\theta}}{\mathbf{=}}\frac{\mathbf{y}}{\mathbf{x}}}$

$\overline{){\mathbf{t}}{\mathbf{a}}{{\mathbf{n}}}^{\mathbf{-}\mathbf{1}}{\mathbf{(}}{\mathbf{-}}{\mathbf{\theta}}{\mathbf{)}}{\mathbf{}}{\mathbf{=}}{\mathbf{}}{\mathbf{180}}{\mathbf{\xb0}}{\mathbf{-}}{\mathbf{}}{\mathbf{t}}{\mathbf{a}}{{\mathbf{n}}}^{\mathbf{-}\mathbf{1}}{\mathbf{\theta}}}$

θ_{A} = 180 - tan^{-1}(5.00/-3.00)

You are given two vectors: **A** = −3.00 **î **+ 5.00 **ĵ** and **B** = 8.00 **î **+ 2.00 **ĵ**. Let the counterclockwise angles be positive.

What angle θ_{A}, where 0° ≤ θ_{A} < 360°, does **A** make with the +x-axis?