Uniform accelerated motion (UAM) equations:

$\overline{)\mathbf{}{{\mathit{v}}}_{{\mathit{f}}}{\mathbf{}}{\mathbf{=}}{\mathbf{}}{{\mathit{v}}}_{{\mathbf{0}}}{\mathbf{}}{\mathbf{+}}{\mathit{a}}{\mathit{t}}\phantom{\rule{0ex}{0ex}}{\mathbf{\u2206}}{\mathit{x}}{\mathbf{=}}{\mathbf{}}\mathbf{\left(}\frac{{\mathit{v}}_{\mathit{f}}\mathbf{+}{\mathit{v}}_{\mathbf{0}}}{\mathbf{2}}\mathbf{\right)}{\mathit{t}}\phantom{\rule{0ex}{0ex}}{\mathbf{\u2206}}{\mathit{x}}{\mathbf{=}}{\mathbf{}}{{\mathit{v}}}_{{\mathbf{0}}}{\mathit{t}}{\mathbf{+}}{\frac{1}{2}}{\mathit{a}}{{\mathit{t}}}^{{\mathbf{2}}}\phantom{\rule{0ex}{0ex}}{\mathbf{}}{{{\mathit{v}}}_{{\mathit{f}}}}^{{\mathbf{2}}}{\mathbf{=}}{\mathbf{}}{{{\mathit{v}}}_{{\mathbf{0}}}}^{{\mathbf{2}}}{\mathbf{}}{\mathbf{+}}{\mathbf{2}}{\mathit{a}}{\mathbf{\u2206}}{\mathit{x}}}$

**a)**

- a = ?
- t = 0.12 s
- v
_{f}= 3.9 m/s - v
_{0}= 0 m/s - Δx = ?

Using **v _{f} = v_{0} + at**

a = (v_{f} - v_{0})/t = (3.9 - 0)/0.12 = 32.5 m/s^{2}

When striking, the pike, a predatory fish, can accelerate from rest to a speed of 3.9m/s in 0.12s.

a) What is the acceleration of the pike during this strike?

Express your answer using two significant figures.

b) How far does the pike move during this strike?

Express your answer using two significant figures.