Consider the figure

Center of mass,

$\overline{)\begin{array}{rcl}\mathbf{C}\mathbf{.}\mathbf{M}\mathbf{}\mathbf{=}\mathbf{}\mathbf{[}\mathbf{X}& {\mathbf{=}}& \frac{{\mathbf{M}}_{\mathbf{a}}{\mathbf{X}}_{\mathbf{C}\mathbf{a}}\mathbf{+}{\mathbf{M}}_{\mathbf{b}}{\mathbf{X}}_{\mathbf{C}\mathbf{b}}}{{\mathbf{M}}_{\mathbf{a}}\mathbf{+}{\mathbf{M}}_{\mathbf{b}}}\mathbf{,}\mathbf{}\begin{array}{cl}\mathbf{Y}\mathbf{=}& \frac{{\mathbf{M}}_{\mathbf{a}}{\mathbf{Y}}_{\mathbf{C}\mathbf{a}}\mathbf{+}{\mathbf{M}}_{\mathbf{b}}{\mathbf{Y}}_{\mathbf{C}\mathbf{b}}}{{\mathbf{M}}_{\mathbf{a}}\mathbf{+}{\mathbf{M}}_{\mathbf{b}}}\end{array}\mathbf{]}\end{array}}$

M = Aσ

M_{a} = (16-8)(6)σ = (48 cm^{2})σ

M_{b} = (15)(8.0)σ = (120 cm^{2})σ

Calculate the center of mass of the object below. Assume the mass is uniformly distributed.

Frequently Asked Questions

What scientific concept do you need to know in order to solve this problem?

Our tutors have indicated that to solve this problem you will need to apply the Intro to Center of Mass concept. You can view video lessons to learn Intro to Center of Mass. Or if you need more Intro to Center of Mass practice, you can also practice Intro to Center of Mass practice problems.