The net force is equal to centripetal force:

F_{b} + F_{g} = F_{c}

Centripetal force:

$\overline{){{\mathbf{F}}}_{{\mathbf{c}}}{\mathbf{=}}\frac{\mathbf{m}{\mathbf{v}}^{\mathbf{2}}}{\mathbf{r}}}$

Gibbons, small Asian apes, move by brachiation*,* swinging below a handhold to move forward to the next handhold. A 9.0 kg gibbon has an arm length (hand to shoulder) of 0.60 m. We can model its motion as that of a point mass swinging at the end of a 0.60-m-long, massless rod. At the lowest point of its swing, the gibbon is moving at 3.2 m/s .

What upward force must a branch provide to support the swinging gibbon?

Express your answer to two significant figures and include the appropriate units.