Phase constant:

$\overline{){\mathbf{tan}}{\mathbf{}}{\mathbf{\varphi}}{\mathbf{=}}\frac{{\mathbf{X}}_{\mathbf{L}}\mathbf{-}{\mathbf{X}}_{\mathbf{C}}}{\mathbf{R}}}$

Resonance Frequency,

$\overline{){{\mathbf{\omega}}}_{\mathbf{r}\mathbf{e}\mathbf{s}}{\mathbf{=}}\frac{\mathbf{1}}{\sqrt{\mathbf{L}\mathbf{C}}}}$

Impedance,

$\overline{){{\mathbf{X}}}_{{\mathbf{L}}}{\mathbf{=}}{\mathbf{\omega}}{\mathbf{L}}}$

$\overline{){{\mathbf{X}}}_{{\mathbf{C}}}{\mathbf{=}}\frac{\mathbf{1}}{\mathbf{\omega C}}}$

Angular frequency,

$\overline{){\mathbf{\omega}}{\mathbf{=}}{\mathbf{2}}{\mathbf{\pi}}{\mathbf{f}}}$

**(2)**

**Φ = 60°**

**R = 2.5 Ω**

Rearranging the phase constant equation:

R tan Φ = (X_{L} - X_{C})

The figure shows voltage and current graphs for a series RLC circuit.

If L = 380μH , what is the resonance frequency?

Frequently Asked Questions

What scientific concept do you need to know in order to solve this problem?

Our tutors have indicated that to solve this problem you will need to apply the Resonance in Series LRC Circuits concept. You can view video lessons to learn Resonance in Series LRC Circuits. Or if you need more Resonance in Series LRC Circuits practice, you can also practice Resonance in Series LRC Circuits practice problems.