**(a)**

For the two revolutions, time, t' = t + 0.750 s

The angular displacement for one revolution, Δθ = 2π rad

For two complete revolutions, 2Δθ= 4π rad

The rotational kinematic relation:

$\overline{){\mathbf{\u2206}}{\mathbf{\theta}}{\mathbf{=}}{{\mathbf{\omega}}}_{{\mathbf{0}}}{\mathbf{t}}{\mathbf{+}}\frac{\mathbf{1}}{\mathbf{2}}{\mathbf{\alpha}}{{\mathbf{t}}}^{{\mathbf{2}}}}$

For the first complete revolution:

$\begin{array}{rcl}\mathbf{2}\mathbf{\pi}& \mathbf{=}& \mathbf{0}\mathbf{+}\frac{\mathbf{1}}{\mathbf{2}}\mathbf{\alpha}{\mathbf{t}}^{\mathbf{2}}\end{array}$

4π = αt^{2}

For two complete revolutions:

$\begin{array}{rcl}\mathbf{4}\mathbf{\pi}& \mathbf{=}& \mathbf{0}\mathbf{+}\frac{\mathbf{1}}{\mathbf{2}}\mathbf{\alpha}{\mathbf{(}\mathbf{t}\mathbf{+}\mathbf{0}\mathbf{.}\mathbf{750}\mathbf{)}}^{\mathbf{2}}\\ \mathbf{8}\mathbf{\pi}& \mathbf{=}& \mathbf{\alpha}\mathbf{(}{\mathbf{t}}^{\mathbf{2}}\mathbf{+}\mathbf{1}\mathbf{.}\mathbf{5}\mathbf{t}\mathbf{+}\mathbf{0}\mathbf{.}\mathbf{5625}\mathbf{)}\end{array}$

8π = α(t^{2} + 1.5t + 0.5625)

Dividing the expression for two complete revolutions and that of one complete revolution:

A computer disk drive is turned on starting from rest and has a constant angular acceleration. If it took 0.750 seconds for the drive to make its second revolution,

1. How long did it take to make the first complete revolution?

2. What is its angular acceleration in rad/s^{2}^{}?

Frequently Asked Questions

What scientific concept do you need to know in order to solve this problem?

Our tutors have indicated that to solve this problem you will need to apply the Equations of Rotational Motion concept. You can view video lessons to learn Equations of Rotational Motion. Or if you need more Equations of Rotational Motion practice, you can also practice Equations of Rotational Motion practice problems.