Binding energy:

$\overline{){\mathbf{BE}}{\mathbf{=}}{\mathbf{\u2206}}{\mathbf{m}}{\mathbf{\xb7}}{{\mathbf{c}}}^{{\mathbf{2}}}}$

$\overline{){\mathbf{BE}}{\mathbf{=}}{\mathbf{[}}{\mathit{Z}}{{\mathit{M}}}_{{\mathbf{p}}}{\mathbf{+}}{\mathit{N}}{{\mathit{M}}}_{{\mathbf{n}}}{\mathbf{-}}{{\mathit{M}}}_{\mathbf{a}\mathbf{t}\mathbf{o}\mathbf{m}}{\mathbf{]}}{{\mathit{c}}}^{{\mathbf{2}}}}$

**(a)**

m_{32S} = 31.9633 u

m_{p} = 1.00783 u

m_{n} = 1.00866 u

1 u = 931.49 MeV/*c*^{2}

Z = 16

The nuclear mass of 32^{S} is 31.9633 amu. Calculate the binding energy per nucleon for 32^{S}.

Frequently Asked Questions

What scientific concept do you need to know in order to solve this problem?

Our tutors have indicated that to solve this problem you will need to apply the Nuclear Physics concept. You can view video lessons to learn Nuclear Physics. Or if you need more Nuclear Physics practice, you can also practice Nuclear Physics practice problems.