Induced emf,

$\overline{){\mathbf{\epsilon}}{\mathbf{=}}{\mathbf{-}}{\mathbf{N}}{\mathbf{A}}\frac{\mathbf{\u2206}\mathbf{B}}{\mathbf{\u2206}\mathbf{t}}}$

Ohm's law,

$\overline{){\mathbf{\epsilon}}{\mathbf{=}}{\mathbf{I}}{\mathbf{R}}}$

A = πa^{2}

ΔB = B_{1} - B_{0}

$\begin{array}{rcl}\mathbf{\epsilon}& \mathbf{=}& \mathbf{-}\mathbf{N}\mathbf{\left(}{\mathbf{\pi a}}^{\mathbf{2}}\mathbf{\right)}\frac{\mathbf{(}{\mathbf{B}}_{\mathbf{1}}\mathbf{-}{\mathbf{B}}_{\mathbf{0}}\mathbf{)}}{\mathbf{\u2206}\mathbf{t}}\\ \mathbf{IR}& \mathbf{=}& \mathbf{-}\mathbf{N}\mathbf{\left(}{\mathbf{\pi a}}^{\mathbf{2}}\mathbf{\right)}\frac{\mathbf{(}{\mathbf{B}}_{\mathbf{1}}\mathbf{-}{\mathbf{B}}_{\mathbf{0}}\mathbf{)}}{\mathbf{\u2206}\mathbf{t}}\\ \mathbf{\u2206}\mathbf{t}& \mathbf{=}& \frac{\mathbf{-}\mathbf{N}\mathbf{\left(}{\mathbf{\pi a}}^{\mathbf{2}}\mathbf{\right)}\mathbf{(}{\mathbf{B}}_{\mathbf{1}}\mathbf{-}{\mathbf{B}}_{\mathbf{0}}\mathbf{)}}{\mathbf{IR}}\end{array}$

A loop of wire of radius a = 25mm has an electrical resistance R = 0.039 Ω. The loop is initially inside a uniform magnetic field of magnitude B_{0} = 1.9T parallel to the loop's axis. The magnetic field is then reduced slowly at a constant rate, which induces a current I = 0.20A in the loop. How long does it take for the magnitude of the uniform magnetic field to drop from 1.9T to zero? Find the time Δt it takes the magnetic field to drop to zero.

Frequently Asked Questions

What scientific concept do you need to know in order to solve this problem?

Our tutors have indicated that to solve this problem you will need to apply the Intro to Induction concept. You can view video lessons to learn Intro to Induction. Or if you need more Intro to Induction practice, you can also practice Intro to Induction practice problems.

What professor is this problem relevant for?

Based on our data, we think this problem is relevant for Professor Gutperle's class at UCLA.