Intro to Induction Video Lessons

Video Thumbnail

Concept

Problem: A loop of wire of radius a = 25mm has an electrical resistance R = 0.039 Ω. The loop is initially inside a uniform magnetic field of magnitude B0 = 1.9T parallel to the loop's axis. The magnetic field is then reduced slowly at a constant rate, which induces a current I = 0.20A in the loop. How long does it take for the magnitude of the uniform magnetic field to drop from 1.9T to zero? Find the time Δt it takes the magnetic field to drop to zero.

FREE Expert Solution

Induced emf,

ε=-NABt

Ohm's law,

ε=IR

A = πa2

ΔB = B1 - B0 

ε=-N(πa2)(B1-B0)tIR=-N(πa2)(B1-B0)tt=-N(πa2)(B1-B0)IR

90% (418 ratings)
View Complete Written Solution
Problem Details

A loop of wire of radius a = 25mm has an electrical resistance R = 0.039 Ω. The loop is initially inside a uniform magnetic field of magnitude B0 = 1.9T parallel to the loop's axis. The magnetic field is then reduced slowly at a constant rate, which induces a current I = 0.20A in the loop. How long does it take for the magnitude of the uniform magnetic field to drop from 1.9T to zero? Find the time Δt it takes the magnetic field to drop to zero.

Frequently Asked Questions

What scientific concept do you need to know in order to solve this problem?

Our tutors have indicated that to solve this problem you will need to apply the Intro to Induction concept. You can view video lessons to learn Intro to Induction. Or if you need more Intro to Induction practice, you can also practice Intro to Induction practice problems.