Conservation of momentum:

$\overline{){{\mathbf{P}}}_{{\mathbf{i}}}{\mathbf{=}}{{\mathbf{P}}}_{{\mathbf{f}}}}$

Therefore:

$\begin{array}{rcl}\mathbf{m}{\mathbf{v}}_{\mathbf{1}\mathbf{i}}\mathbf{-}\mathbf{m}{\mathbf{v}}_{\mathbf{2}\mathbf{i}}& \mathbf{=}& \mathbf{-}\mathbf{m}{\mathbf{v}}_{\mathbf{1}\mathbf{f}}\mathbf{+}\mathbf{m}{\mathbf{v}}_{\mathbf{2}\mathbf{f}}\\ {\mathbf{v}}_{\mathbf{1}\mathbf{i}}\mathbf{-}{\mathbf{v}}_{\mathbf{2}\mathbf{i}}& \mathbf{=}& \mathbf{-}{\mathbf{v}}_{\mathbf{1}\mathbf{f}}\mathbf{+}{\mathbf{v}}_{\mathbf{2}\mathbf{f}}\\ \mathbf{-}{\mathbf{v}}_{\mathbf{1}\mathbf{f}}\mathbf{+}{\mathbf{v}}_{\mathbf{2}\mathbf{f}}& \mathbf{=}& {\mathbf{v}}_{\mathbf{1}\mathbf{i}}\mathbf{-}{\mathbf{v}}_{\mathbf{2}\mathbf{i}}\\ \mathbf{-}{\mathbf{v}}_{\mathbf{1}\mathbf{f}}\mathbf{+}{\mathbf{v}}_{\mathbf{2}\mathbf{f}}& \mathbf{=}& \mathbf{2}\mathbf{.}\mathbf{0}\mathbf{-}\mathbf{1}\mathbf{.}\mathbf{0}\\ {\mathbf{v}}_{\mathbf{1}\mathbf{f}}& \mathbf{=}& {\mathbf{v}}_{\mathbf{2}\mathbf{f}}\mathbf{-}\mathbf{1}\end{array}$

Two billiard balls with the same mass m move in the direction of one another. Ball one travels in the positive x-direction with a speed of V_{1i}, and ball two travels in the negative x-direction with a speed of V_{2i}. The two balls collide elastically, and both balls change direction after collision. If the initial speeds of the balls were v_{1i}=2.0m/s and v_{2i} =1.0m/s, what would be the final speed and direction of ball two, v_{2f}, in m/s?

Frequently Asked Questions

What scientific concept do you need to know in order to solve this problem?

Our tutors have indicated that to solve this problem you will need to apply the Elastic Collisions concept. You can view video lessons to learn Elastic Collisions. Or if you need more Elastic Collisions practice, you can also practice Elastic Collisions practice problems.

What professor is this problem relevant for?

Based on our data, we think this problem is relevant for Professor Adams' class at ASU.