# Problem: A small object moves along the x-axis with acceleration ax(t) = −(0.0320 m/s3)(15.0 s - t). At t=0 the object is at x = −14.0 m and has velocity v0x = 4.50 m/s. What is the x-coordinate of the object when t = 10.0 s?

###### FREE Expert Solution

x-coordinate, x(t):

$\overline{){\mathbf{x}}{\mathbf{\left(}}{\mathbf{t}}{\mathbf{\right)}}{\mathbf{=}}{{\mathbf{\int }}}_{{\mathbf{0}}}^{{\mathbf{t}}}{{\mathbf{v}}}_{{\mathbf{x}}}{\mathbf{\left(}}{\mathbf{t}}{\mathbf{\right)}}{\mathbf{+}}{\mathbit{c}}}$

Velocity, vx(t):

$\overline{){{\mathbf{v}}}_{{\mathbf{x}}}{\mathbf{\left(}}{\mathbf{t}}{\mathbf{\right)}}{\mathbf{=}}{{\mathbf{\int }}}_{{\mathbf{0}}}^{{\mathbf{t}}}{{\mathbf{a}}}_{{\mathbf{x}}}{\mathbf{\left(}}{\mathbf{t}}{\mathbf{\right)}}{\mathbf{+}}{\mathbit{c}}}$

95% (119 ratings) ###### Problem Details

A small object moves along the x-axis with acceleration ax(t) = −(0.0320 m/s3)(15.0 s - t). At t=0 the object is at x = −14.0 m and has velocity v0x = 4.50 m/s. What is the x-coordinate of the object when t = 10.0 s?