x-coordinate, x(t):

$\overline{){\mathbf{x}}{\mathbf{\left(}}{\mathbf{t}}{\mathbf{\right)}}{\mathbf{=}}{{\mathbf{\int}}}_{{\mathbf{0}}}^{{\mathbf{t}}}{{\mathbf{v}}}_{{\mathbf{x}}}{\mathbf{\left(}}{\mathbf{t}}{\mathbf{\right)}}{\mathbf{+}}{\mathit{c}}}$

Velocity, v_{x}(t):

$\overline{){{\mathbf{v}}}_{{\mathbf{x}}}{\mathbf{\left(}}{\mathbf{t}}{\mathbf{\right)}}{\mathbf{=}}{{\mathbf{\int}}}_{{\mathbf{0}}}^{{\mathbf{t}}}{{\mathbf{a}}}_{{\mathbf{x}}}{\mathbf{\left(}}{\mathbf{t}}{\mathbf{\right)}}{\mathbf{+}}{\mathit{c}}}$

A small object moves along the x-axis with acceleration a_{x}(t) = −(0.0320 m/s^{3})(15.0 s - *t*). At *t*=0 the object is at x = −14.0 m and has velocity v_{0x} = 4.50 m/s. What is the x-coordinate of the object when t = 10.0 s?

Frequently Asked Questions

What scientific concept do you need to know in order to solve this problem?

Our tutors have indicated that to solve this problem you will need to apply the Velocity Functions & Instantaneous Acceleration concept. You can view video lessons to learn Velocity Functions & Instantaneous Acceleration. Or if you need more Velocity Functions & Instantaneous Acceleration practice, you can also practice Velocity Functions & Instantaneous Acceleration practice problems.