Part D

The magnetic field due to a solenoid in a rectangular path,

${\mathbf{\oint}}{\mathbf{B}}{\mathbf{\xb7}}{\mathbf{ds}}{\mathbf{=}}{\mathbf{\oint}}{\mathbf{B}}{\mathbf{\xb7}}{\mathbf{ds}}{\mathbf{+}}{\mathbf{\oint}}{\mathbf{B}}{\mathbf{\xb7}}{\mathbf{ds}}{\mathbf{+}}{\mathbf{\oint}}{\mathbf{B}}{\mathbf{\xb7}}{\mathbf{ds}}{\mathbf{+}}{\mathbf{\oint}}{\mathbf{B}}{\mathbf{\xb7}}{\mathbf{ds}}$

When the magnetic field and area integral are perpendicular,

${\mathbf{\oint}}{\mathbf{B}}{\mathbf{\xb7}}{\mathbf{ds}}{\mathbf{}}{\mathbf{=}}{\mathbf{}}{\mathbf{\oint}}{\mathbf{B}}{\mathbf{\xb7}}{\mathbf{ds}}{\mathbf{}}{\mathbf{cos}}{\mathbf{}}{\mathbf{90}}\phantom{\rule{0ex}{0ex}}{\mathbf{\oint}}{\mathbf{B}}{\mathbf{\xb7}}{\mathbf{ds}}{\mathbf{}}{\mathbf{=}}{\mathbf{}}{\mathbf{0}}$

Thus for the rectangular path,

$\begin{array}{rcl}{\mathbf{\oint}}{\mathbf{B}}{\mathbf{\xb7}}{\mathbf{ds}}& \mathbf{=}& {\mathbf{\oint}}{\mathbf{B}}{\mathbf{\xb7}}{\mathbf{ds}}{\mathbf{+}}{\mathbf{\oint}}{\mathbf{B}}{\mathbf{\xb7}}{\mathbf{ds}}{\mathbf{+}}{\mathbf{\oint}}{\mathbf{B}}{\mathbf{\xb7}}{\mathbf{ds}}{\mathbf{+}}{\mathbf{\oint}}{\mathbf{B}}{\mathbf{\xb7}}{\mathbf{ds}}\\ & \mathbf{=}& \mathbf{0}\mathbf{+}\mathbf{0}\mathbf{+}\mathbf{B}\mathbf{L}\mathbf{+}\mathbf{0}\end{array}$

${\mathbf{\oint}}{\mathbf{B}}{\mathbf{\xb7}}{\mathbf{ds}}{\mathbf{=}}{\mathit{B}}{\mathit{L}}$

From amperes circuit law,

$\overline{)\begin{array}{rcl}{\mathbf{BL}}& {\mathbf{=}}& {\mathbf{\mu}}_{\mathbf{0}}\mathbf{NI}\end{array}}$

$\begin{array}{rcl}\mathbf{B}\mathbf{L}& \mathbf{=}& {{\mathbf{\mu}}}_{{\mathbf{0}}}{\mathbf{NI}}\\ \mathbf{B}& \mathbf{=}& {{\mathbf{\mu}}}_{{\mathbf{0}}}{\mathbf{\xb7}}\frac{\mathbf{N}}{\mathbf{L}}{\mathbf{\xb7}}{\mathbf{I}}\\ & \mathbf{=}& {{\mathbf{\mu}}}_{{\mathbf{0}}}{\mathbf{nI}}\end{array}$

Magnetic Field inside a Very Long Solenoid Learning Goal: To apply Ampère's law to find the magnetic field inside an infinite solenoid. In this problem we will apply Ampère's law to calculate the magnetic field inside a very long solenoid (only a relatively short segment of the solenoid is shown in the pictures). The segment of the solenoid shown in (Figure 1) has length L, diameter D, and n turns per unit length with each carrying current I. It is usual to assume that the component of the current along the z axis is negligible. (This may be assured by winding two layers of closely spaced wires that spiral in opposite directions.) From symmetry considerations it is possible to show that far from the ends of the solenoid, the magnetic field is axial.

Part D

What is *I*encl, the current passing through the chosen loop?

Express your answer in terms of *L* (the length of the Ampèrean loop along the axis of the solenoid) and other variables given in the introduction.

Part E

Find *B*in, the *z* component of the magnetic field inside the solenoid where Ampère's law applies.

Express your answer in terms of *L*, *D*, *n*, *I*, and physical constants such as *?*0.

Frequently Asked Questions

What scientific concept do you need to know in order to solve this problem?

Our tutors have indicated that to solve this problem you will need to apply the Ampere's Law with Calculus concept. You can view video lessons to learn Ampere's Law with Calculus. Or if you need more Ampere's Law with Calculus practice, you can also practice Ampere's Law with Calculus practice problems.