# Problem: A 12-pack of Omni-Cola (mass 4.30 kg) is initially at rest on a horizontal floor. It is then pushed in a straight line for 1.20 m by a trained dog who exerts a horizontal force with magnitude 36.0 N. You may want to review (Pages 177 - 182). For related problem-solving tips and strategies, you may want to view a Video Tutor Solution of Using work and energy to calculate speed.Use the work-energy theorem to find the final speed of the 12-pack if there is no friction between the 12-pack and the floor.Use the work-energy theorem to find the final speed of the 12-pack if the coefficient of kinetic friction between the 12-pack and the floor is 0.30.

⚠️Our tutors found the solution shown to be helpful for the problem you're searching for. We don't have the exact solution yet.

###### Problem Details
A 12-pack of Omni-Cola (mass 4.30 kg) is initially at rest on a horizontal floor. It is then pushed in a straight line for 1.20 m by a trained dog who exerts a horizontal force with magnitude 36.0 N.

You may want to review (Pages 177 - 182).

For related problem-solving tips and strategies, you may want to view a Video Tutor Solution of Using work and energy to calculate speed.

Use the work-energy theorem to find the final speed of the 12-pack if there is no friction between the 12-pack and the floor.

Use the work-energy theorem to find the final speed of the 12-pack if the coefficient of kinetic friction between the 12-pack and the floor is 0.30.