Problem: The spring of a spring gun has force constant k = 400 N/m and negligible mass. The spring is compressed 6.00 cm and a ball with mass 0.0300 kg is placed in the horizontal barrel against the compressed spring. The spring is then released, and the ball is propelled out the barrel of the gun. The barrel is 6.00 cm long, so the ball leaves the barrel at the same point that it loses contact with the spring. The gun is held so the barrel is horizontal.Calculate the speed with which the ball leaves the barrel if you can ignore friction.Calculate the speed of the ball as it leaves the barrel if a constant resisting force of 6.00 N acts on the ball as it moves along the barrel.For the situation in part B, at what position along the barrel does the ball have the greatest speed? (In this case, the maximum speed does not occur at the end of the barrel.)What is that greatest speed?

⚠️Our tutors found the solution shown to be helpful for the problem you're searching for. We don't have the exact solution yet.

FREE Expert Solution
Problem Details

The spring of a spring gun has force constant k = 400 N/m and negligible mass. The spring is compressed 6.00 cm and a ball with mass 0.0300 kg is placed in the horizontal barrel against the compressed spring. The spring is then released, and the ball is propelled out the barrel of the gun. The barrel is 6.00 cm long, so the ball leaves the barrel at the same point that it loses contact with the spring. The gun is held so the barrel is horizontal.

Calculate the speed with which the ball leaves the barrel if you can ignore friction.

Calculate the speed of the ball as it leaves the barrel if a constant resisting force of 6.00 N acts on the ball as it moves along the barrel.

For the situation in part B, at what position along the barrel does the ball have the greatest speed? (In this case, the maximum speed does not occur at the end of the barrel.)

What is that greatest speed?

Frequently Asked Questions

What scientific concept do you need to know in order to solve this problem?

Our tutors have indicated that to solve this problem you will need to apply the Work By Variable Forces (Springs) concept. You can view video lessons to learn Work By Variable Forces (Springs). Or if you need more Work By Variable Forces (Springs) practice, you can also practice Work By Variable Forces (Springs) practice problems.